On the Influence of an Acoustically Optimized Turbine Exit Casing Onto the Unsteady Flow Field Downstream of a Low Pressure Turbine RotorSource: Journal of Turbomachinery:;2019:;volume( 141 ):;issue: 004::page 41003Author:Simonassi, Loris
,
Zenz, Manuel
,
Zerobin, Stefan
,
Selic, Thorsten
,
Heitmeir, Franz
,
Marn, Andreas
DOI: 10.1115/1.4041540Publisher: The American Society of Mechanical Engineers (ASME)
Abstract: Modern low pressure turbines (LPT) are designed in order to fulfil a various number of requirements such as high endurance, low noise, high efficiency, low weight, and low fuel consumption. Regarding the reduction of the emitted noise, different designs of LPT exit guide vanes (aerodynamically and/or acoustically optimized) of the turbine exit casing (TEC) were tested, and their noise reduction capabilities and aerodynamic performance were evaluated. In particular, measurements of TEC-losses were performed, and differences in the losses were reported. Measurements were carried out in a one and a half stage subsonic turbine test facility at the engine relevant operating point approach. This work focuses on the study of the unsteady flow field downstream of an unshrouded LPT rotor. The influence on the upstream flow field of a TEC design including acoustically optimized vanes (inverse cut-off TEC) is investigated and compared with a second TEC configuration without vanes (Vaneless TEC), by means of fast response aerodynamic pressure probe (FRAPP) measurements. The second configuration served as a reference concerning the influence of turbine exit guide vanes (TEGVs) onto the upstream located LPT rotor. The interactions between the stator and rotor wakes, secondary flows, and the TEGVs potential effect are identified via modal decomposition according to the theory of Tyler and Sofrin. The main structures constituting the unsteady flow field are detected, and the role of the major interaction effects in the loss generation mechanism and in the acoustic emission is analyzed. This study based on the modal analysis of the unsteady flow field offers new insight into the main interaction mechanisms and their importance in the assessment of the aerodynamic and aeroelastic performance of modern LPT exit casings.
|
Collections
Show full item record
contributor author | Simonassi, Loris | |
contributor author | Zenz, Manuel | |
contributor author | Zerobin, Stefan | |
contributor author | Selic, Thorsten | |
contributor author | Heitmeir, Franz | |
contributor author | Marn, Andreas | |
date accessioned | 2019-03-17T09:34:08Z | |
date available | 2019-03-17T09:34:08Z | |
date copyright | 1/21/2019 12:00:00 AM | |
date issued | 2019 | |
identifier issn | 0889-504X | |
identifier other | turbo_141_04_041003.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl1/handle/yetl/4255549 | |
description abstract | Modern low pressure turbines (LPT) are designed in order to fulfil a various number of requirements such as high endurance, low noise, high efficiency, low weight, and low fuel consumption. Regarding the reduction of the emitted noise, different designs of LPT exit guide vanes (aerodynamically and/or acoustically optimized) of the turbine exit casing (TEC) were tested, and their noise reduction capabilities and aerodynamic performance were evaluated. In particular, measurements of TEC-losses were performed, and differences in the losses were reported. Measurements were carried out in a one and a half stage subsonic turbine test facility at the engine relevant operating point approach. This work focuses on the study of the unsteady flow field downstream of an unshrouded LPT rotor. The influence on the upstream flow field of a TEC design including acoustically optimized vanes (inverse cut-off TEC) is investigated and compared with a second TEC configuration without vanes (Vaneless TEC), by means of fast response aerodynamic pressure probe (FRAPP) measurements. The second configuration served as a reference concerning the influence of turbine exit guide vanes (TEGVs) onto the upstream located LPT rotor. The interactions between the stator and rotor wakes, secondary flows, and the TEGVs potential effect are identified via modal decomposition according to the theory of Tyler and Sofrin. The main structures constituting the unsteady flow field are detected, and the role of the major interaction effects in the loss generation mechanism and in the acoustic emission is analyzed. This study based on the modal analysis of the unsteady flow field offers new insight into the main interaction mechanisms and their importance in the assessment of the aerodynamic and aeroelastic performance of modern LPT exit casings. | |
publisher | The American Society of Mechanical Engineers (ASME) | |
title | On the Influence of an Acoustically Optimized Turbine Exit Casing Onto the Unsteady Flow Field Downstream of a Low Pressure Turbine Rotor | |
type | Journal Paper | |
journal volume | 141 | |
journal issue | 4 | |
journal title | Journal of Turbomachinery | |
identifier doi | 10.1115/1.4041540 | |
journal fristpage | 41003 | |
journal lastpage | 041003-10 | |
tree | Journal of Turbomachinery:;2019:;volume( 141 ):;issue: 004 | |
contenttype | Fulltext |