YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Role of Vortex Shedding in the Trailing Edge Loss of Transonic Turbine Blades

    Source: Journal of Turbomachinery:;2019:;volume( 141 ):;issue: 004::page 41001
    Author:
    Melzer, A. P.
    ,
    Pullan, G.
    DOI: 10.1115/1.4041307
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The loss of square, round, and elliptical turbine trailing edge geometries, and the mechanisms responsible, is assessed using a two-part experimental program. In the first part, a single blade experiment, in a channel with contoured walls, allowed rapid testing of a range of trailing edge sizes and shapes. In the second part, turbine blade cascades with a subset of sizes of the trailing edge geometries tested in part one were evaluated in a closed-loop variable density facility, at exit Mach numbers from 0.40 to 0.97, and exit Reynolds numbers from 1.5 × 105 to 2.5 × 106. Throughout the test campaign, detailed instantaneous Schlieren images of the trailing edge flows have been obtained to identify the underlying unsteady mechanisms in the base region. The experiments reveal the importance of suppressing transonic vortex shedding, and quantify the influence of this mechanism on loss. The state and thickness of the blade boundary layers immediately upstream of the trailing edge are of critical importance in determining the onset of transonic vortex shedding. Elliptical trailing edge geometries have also been found to be effective at suppressing transonic vortex shedding. For trailing edges that exhibit transonic vortex shedding, a mechanism is identified whereby reflected shed shockwaves encourage or discourage vortex shedding depending on the phase with which the shocks return to the trailing edge, capable of modifying the loss generated.
    • Download: (6.664Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Role of Vortex Shedding in the Trailing Edge Loss of Transonic Turbine Blades

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4255547
    Collections
    • Journal of Turbomachinery

    Show full item record

    contributor authorMelzer, A. P.
    contributor authorPullan, G.
    date accessioned2019-03-17T09:34:06Z
    date available2019-03-17T09:34:06Z
    date copyright1/21/2019 12:00:00 AM
    date issued2019
    identifier issn0889-504X
    identifier otherturbo_141_04_041001.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4255547
    description abstractThe loss of square, round, and elliptical turbine trailing edge geometries, and the mechanisms responsible, is assessed using a two-part experimental program. In the first part, a single blade experiment, in a channel with contoured walls, allowed rapid testing of a range of trailing edge sizes and shapes. In the second part, turbine blade cascades with a subset of sizes of the trailing edge geometries tested in part one were evaluated in a closed-loop variable density facility, at exit Mach numbers from 0.40 to 0.97, and exit Reynolds numbers from 1.5 × 105 to 2.5 × 106. Throughout the test campaign, detailed instantaneous Schlieren images of the trailing edge flows have been obtained to identify the underlying unsteady mechanisms in the base region. The experiments reveal the importance of suppressing transonic vortex shedding, and quantify the influence of this mechanism on loss. The state and thickness of the blade boundary layers immediately upstream of the trailing edge are of critical importance in determining the onset of transonic vortex shedding. Elliptical trailing edge geometries have also been found to be effective at suppressing transonic vortex shedding. For trailing edges that exhibit transonic vortex shedding, a mechanism is identified whereby reflected shed shockwaves encourage or discourage vortex shedding depending on the phase with which the shocks return to the trailing edge, capable of modifying the loss generated.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleThe Role of Vortex Shedding in the Trailing Edge Loss of Transonic Turbine Blades
    typeJournal Paper
    journal volume141
    journal issue4
    journal titleJournal of Turbomachinery
    identifier doi10.1115/1.4041307
    journal fristpage41001
    journal lastpage041001-13
    treeJournal of Turbomachinery:;2019:;volume( 141 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian