YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Simple Palladium Hydride Embedded Atom Method Potential for Hydrogen Energy Applications

    Source: Journal of Energy Resources Technology:;2019:;volume( 141 ):;issue: 006::page 61202
    Author:
    Hijazi, Iyad
    ,
    Zhang, Yang
    ,
    Fuller, Robert
    DOI: 10.1115/1.4042405
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: When hydrogen is produced from a biomass or coal gasifier, it is necessary to purify it from syngas streams containing components such as CO, CO2, N2, CH4, and other products. Therefore, a challenge related to hydrogen purification is the development of hydrogen-selective membranes that can operate at elevated temperatures and pressures, provide high fluxes, long operational lifetime, and resistance to poisoning while still maintaining reasonable cost. Palladium-based membranes have been shown to be well suited for these types of high-temperature applications and have been widely utilized for hydrogen separation. Palladium's unique ability to absorb a large quantity of hydrogen can also be applied in various clean energy technologies, like hydrogen fuel cells. In this paper, a fully analytical interatomic embedded atom method (EAM) potential for the Pd-H system has been developed, that is easily extendable to ternary Palladium-based hydride systems, such as Pd-Cu-H and Pd-Ag-H. The new potential has fewer fitting parameters than previously developed EAM Pd-H potentials and is able to accurately predict the cohesive energy, lattice constant, bulk modulus, elastic constants, melting temperature, and the stable Pd-H structures in molecular dynamics (MD) simulations with various hydrogen concentrations. The EAM potential also well predicts the miscibility gap, the segregation of the palladium hydride system into dilute (α), and concentrated (β) phases.
    • Download: (1.135Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Simple Palladium Hydride Embedded Atom Method Potential for Hydrogen Energy Applications

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4255517
    Collections
    • Journal of Energy Resources Technology

    Show full item record

    contributor authorHijazi, Iyad
    contributor authorZhang, Yang
    contributor authorFuller, Robert
    date accessioned2019-03-17T09:28:24Z
    date available2019-03-17T09:28:24Z
    date copyright1/18/2019 12:00:00 AM
    date issued2019
    identifier issn0195-0738
    identifier otherjert_141_06_061202.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4255517
    description abstractWhen hydrogen is produced from a biomass or coal gasifier, it is necessary to purify it from syngas streams containing components such as CO, CO2, N2, CH4, and other products. Therefore, a challenge related to hydrogen purification is the development of hydrogen-selective membranes that can operate at elevated temperatures and pressures, provide high fluxes, long operational lifetime, and resistance to poisoning while still maintaining reasonable cost. Palladium-based membranes have been shown to be well suited for these types of high-temperature applications and have been widely utilized for hydrogen separation. Palladium's unique ability to absorb a large quantity of hydrogen can also be applied in various clean energy technologies, like hydrogen fuel cells. In this paper, a fully analytical interatomic embedded atom method (EAM) potential for the Pd-H system has been developed, that is easily extendable to ternary Palladium-based hydride systems, such as Pd-Cu-H and Pd-Ag-H. The new potential has fewer fitting parameters than previously developed EAM Pd-H potentials and is able to accurately predict the cohesive energy, lattice constant, bulk modulus, elastic constants, melting temperature, and the stable Pd-H structures in molecular dynamics (MD) simulations with various hydrogen concentrations. The EAM potential also well predicts the miscibility gap, the segregation of the palladium hydride system into dilute (α), and concentrated (β) phases.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleA Simple Palladium Hydride Embedded Atom Method Potential for Hydrogen Energy Applications
    typeJournal Paper
    journal volume141
    journal issue6
    journal titleJournal of Energy Resources Technology
    identifier doi10.1115/1.4042405
    journal fristpage61202
    journal lastpage061202-9
    treeJournal of Energy Resources Technology:;2019:;volume( 141 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian