YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Validation of an In Vivo Medical Image-Based Young Human Lumbar Spine Finite Element Model

    Source: Journal of Biomechanical Engineering:;2019:;volume( 141 ):;issue: 003::page 31003
    Author:
    Mills, Matthew J.
    ,
    Sarigul-Klijn, Nesrin
    DOI: 10.1115/1.4042183
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Mathematical models of the human spine can be used to investigate spinal biomechanics without the difficulties, limitations, and ethical concerns associated with physical experimentation. Validation of such models is necessary to ensure that the modeled system behavior accurately represents the physics of the actual system. The goal of this work was to validate a medical image-based nonlinear lumbosacral spine finite element model of a healthy 20-yr-old female subject under physiological moments. Range of motion (ROM), facet joint forces (FJF), and intradiscal pressure (IDP) were compared with experimental values and validated finite element models from the literature. The finite element model presented in this work was in good agreement with published experimental studies and finite element models under pure moments. For applied moments of 7.5 N·m, the ROM in flexion–extension, axial rotation, and lateral bending were 39 deg, 16 deg, and 28 deg, respectively. Excellent agreement was observed between the finite element model and experimental data for IDP under pure compressive loading. The predicted FJFs were lower than those of the experimental results and validated finite element models for extension and torsion, likely due to the nondegenerate properties chosen for the intervertebral disks and morphology of the young female spine. This work is the first to validate a computational lumbar spine model of a young female subject. This model will serve as a valuable tool for predicting orthopedic spinal injuries, studying the effect of intervertebral disk replacements using advanced biomaterials, and investigating soft tissue degeneration.
    • Download: (1.317Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Validation of an In Vivo Medical Image-Based Young Human Lumbar Spine Finite Element Model

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4255499
    Collections
    • Journal of Biomechanical Engineering

    Show full item record

    contributor authorMills, Matthew J.
    contributor authorSarigul-Klijn, Nesrin
    date accessioned2019-03-17T09:27:30Z
    date available2019-03-17T09:27:30Z
    date copyright1/18/2019 12:00:00 AM
    date issued2019
    identifier issn0148-0731
    identifier otherbio_141_03_031003.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4255499
    description abstractMathematical models of the human spine can be used to investigate spinal biomechanics without the difficulties, limitations, and ethical concerns associated with physical experimentation. Validation of such models is necessary to ensure that the modeled system behavior accurately represents the physics of the actual system. The goal of this work was to validate a medical image-based nonlinear lumbosacral spine finite element model of a healthy 20-yr-old female subject under physiological moments. Range of motion (ROM), facet joint forces (FJF), and intradiscal pressure (IDP) were compared with experimental values and validated finite element models from the literature. The finite element model presented in this work was in good agreement with published experimental studies and finite element models under pure moments. For applied moments of 7.5 N·m, the ROM in flexion–extension, axial rotation, and lateral bending were 39 deg, 16 deg, and 28 deg, respectively. Excellent agreement was observed between the finite element model and experimental data for IDP under pure compressive loading. The predicted FJFs were lower than those of the experimental results and validated finite element models for extension and torsion, likely due to the nondegenerate properties chosen for the intervertebral disks and morphology of the young female spine. This work is the first to validate a computational lumbar spine model of a young female subject. This model will serve as a valuable tool for predicting orthopedic spinal injuries, studying the effect of intervertebral disk replacements using advanced biomaterials, and investigating soft tissue degeneration.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleValidation of an In Vivo Medical Image-Based Young Human Lumbar Spine Finite Element Model
    typeJournal Paper
    journal volume141
    journal issue3
    journal titleJournal of Biomechanical Engineering
    identifier doi10.1115/1.4042183
    journal fristpage31003
    journal lastpage031003-12
    treeJournal of Biomechanical Engineering:;2019:;volume( 141 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian