YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Application of Artificial Intelligence Techniques to Estimate the Static Poisson's Ratio Based on Wireline Log Data

    Source: Journal of Energy Resources Technology:;2018:;volume 140:;issue 007::page 72905
    Author:
    Elkatatny, Salaheldin
    DOI: 10.1115/1.4039613
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Static Poisson's ratio (νstatic) is a key factor in determine the in-situ stresses in the reservoir section. νstatic is used to calculate the minimum horizontal stress which will affect the design of the optimum mud widow and the density of cement slurry while drilling. In addition, it also affects the design of the casing setting depth. νstatic is very important for field development and the incorrect estimation of it may lead to heavy investment decisions. νstatic can be measured in the lab using a real reservoir cores. The laboratory measurements of νstatic will take long time and also will increase the overall cost. The goal of this study is to develop accurate models for predicting νstatic for carbonate reservoirs based on wireline log data using artificial intelligence (AI) techniques. More than 610 core and log data points from carbonate reservoirs were used to train and validate the AI models. The more accurate AI model will be used to generate a new correlation for calculating the νstatic. The developed artificial neural network (ANN) model yielded more accurate results for estimating νstatic based on log data; sonic travel times and bulk density compared to adaptive neuro fuzzy inference system (ANFIS) and support vector machine (SVM) methods. The developed empirical equation for νstatic gave a coefficient of determination (R2) of 0.97 and an average absolute percentage error (AAPE) of 1.13%. The developed technique will help geomechanical engineers to estimate a complete trend of νstatic without the need for coring and laboratory work and hence will reduce the overall cost of the well.
    • Download: (2.169Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Application of Artificial Intelligence Techniques to Estimate the Static Poisson's Ratio Based on Wireline Log Data

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4254236
    Collections
    • Journal of Energy Resources Technology

    Show full item record

    contributor authorElkatatny, Salaheldin
    date accessioned2019-02-28T11:14:43Z
    date available2019-02-28T11:14:43Z
    date copyright3/29/2018 12:00:00 AM
    date issued2018
    identifier issn0195-0738
    identifier otherjert_140_07_072905.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4254236
    description abstractStatic Poisson's ratio (νstatic) is a key factor in determine the in-situ stresses in the reservoir section. νstatic is used to calculate the minimum horizontal stress which will affect the design of the optimum mud widow and the density of cement slurry while drilling. In addition, it also affects the design of the casing setting depth. νstatic is very important for field development and the incorrect estimation of it may lead to heavy investment decisions. νstatic can be measured in the lab using a real reservoir cores. The laboratory measurements of νstatic will take long time and also will increase the overall cost. The goal of this study is to develop accurate models for predicting νstatic for carbonate reservoirs based on wireline log data using artificial intelligence (AI) techniques. More than 610 core and log data points from carbonate reservoirs were used to train and validate the AI models. The more accurate AI model will be used to generate a new correlation for calculating the νstatic. The developed artificial neural network (ANN) model yielded more accurate results for estimating νstatic based on log data; sonic travel times and bulk density compared to adaptive neuro fuzzy inference system (ANFIS) and support vector machine (SVM) methods. The developed empirical equation for νstatic gave a coefficient of determination (R2) of 0.97 and an average absolute percentage error (AAPE) of 1.13%. The developed technique will help geomechanical engineers to estimate a complete trend of νstatic without the need for coring and laboratory work and hence will reduce the overall cost of the well.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleApplication of Artificial Intelligence Techniques to Estimate the Static Poisson's Ratio Based on Wireline Log Data
    typeJournal Paper
    journal volume140
    journal issue7
    journal titleJournal of Energy Resources Technology
    identifier doi10.1115/1.4039613
    journal fristpage72905
    journal lastpage072905-8
    treeJournal of Energy Resources Technology:;2018:;volume 140:;issue 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian