YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Influences of CO2 Injection Pressure on CO2 Dispersion and the Mechanism of CO2–CH4 Displacement in Shale

    Source: Journal of Energy Resources Technology:;2018:;volume 140:;issue 001::page 12907
    Author:
    Du, Xidong
    ,
    Gu, Min
    ,
    Duan, Shuo
    ,
    Xian, Xuefu
    DOI: 10.1115/1.4037687
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The effects of CO2 injection pressure (PCO2) on CO2 dispersion and the mechanism of CO2–CH4 displacement in a shale sampled from Changning of China were studied. Results indicated that Coats–Smith dispersion–capacitance model gave a reasonable simulated result to the breakthrough curves of CO2 under different injection pressures. The shapes of CO2 breakthrough curves became more asymmetrical with the increase of CO2 injection pressure. A higher CO2 injection pressure caused early CO2 breakthrough and reduced the recovery of CH4 at CO2 breakthrough (Rpipeline-CH4), but improved the ultimate displaced CH4 amount (Rultimate-CH4). With the increase of CO2 injection pressure, dispersion coefficient (Kd) increased nearly exponentially. A larger Kd led to a lower Rpipeline-CH4 and a longer transition zone. With the increase of CO2 injection pressure, the flowing fraction (F) in pore space decreased nearly linearly and more CO2 diffused into stagnant region to replace adsorbed CH4 in a shale, which resulted in a larger Rultimate-CH4. The mass transfer coefficient (Km) between the flowing and stagnant regions increased with the increase of CO2 injection pressure, which led to a smaller F and larger Rultimate-CH4. CO2 diffusion provided major contribution to CO2 dispersion at lower injection pressure, and mechanical mixing of CO2–CH4 offered predominant contribution to CO2 dispersion at higher injection pressure. Larger mechanical mixing accelerated the mixing of CO2–CH4, which was unfavorable for Rpipeline-CH4. Lower CO2 injection pressure was conductive to gain higher Rpipeline-CH4.
    • Download: (3.356Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Influences of CO2 Injection Pressure on CO2 Dispersion and the Mechanism of CO2–CH4 Displacement in Shale

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4254231
    Collections
    • Journal of Energy Resources Technology

    Show full item record

    contributor authorDu, Xidong
    contributor authorGu, Min
    contributor authorDuan, Shuo
    contributor authorXian, Xuefu
    date accessioned2019-02-28T11:14:42Z
    date available2019-02-28T11:14:42Z
    date copyright9/12/2017 12:00:00 AM
    date issued2018
    identifier issn0195-0738
    identifier otherjert_140_01_012907.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4254231
    description abstractThe effects of CO2 injection pressure (PCO2) on CO2 dispersion and the mechanism of CO2–CH4 displacement in a shale sampled from Changning of China were studied. Results indicated that Coats–Smith dispersion–capacitance model gave a reasonable simulated result to the breakthrough curves of CO2 under different injection pressures. The shapes of CO2 breakthrough curves became more asymmetrical with the increase of CO2 injection pressure. A higher CO2 injection pressure caused early CO2 breakthrough and reduced the recovery of CH4 at CO2 breakthrough (Rpipeline-CH4), but improved the ultimate displaced CH4 amount (Rultimate-CH4). With the increase of CO2 injection pressure, dispersion coefficient (Kd) increased nearly exponentially. A larger Kd led to a lower Rpipeline-CH4 and a longer transition zone. With the increase of CO2 injection pressure, the flowing fraction (F) in pore space decreased nearly linearly and more CO2 diffused into stagnant region to replace adsorbed CH4 in a shale, which resulted in a larger Rultimate-CH4. The mass transfer coefficient (Km) between the flowing and stagnant regions increased with the increase of CO2 injection pressure, which led to a smaller F and larger Rultimate-CH4. CO2 diffusion provided major contribution to CO2 dispersion at lower injection pressure, and mechanical mixing of CO2–CH4 offered predominant contribution to CO2 dispersion at higher injection pressure. Larger mechanical mixing accelerated the mixing of CO2–CH4, which was unfavorable for Rpipeline-CH4. Lower CO2 injection pressure was conductive to gain higher Rpipeline-CH4.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleThe Influences of CO2 Injection Pressure on CO2 Dispersion and the Mechanism of CO2–CH4 Displacement in Shale
    typeJournal Paper
    journal volume140
    journal issue1
    journal titleJournal of Energy Resources Technology
    identifier doi10.1115/1.4037687
    journal fristpage12907
    journal lastpage012907-9
    treeJournal of Energy Resources Technology:;2018:;volume 140:;issue 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian