YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Computing and Information Science in Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Computing and Information Science in Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    An Unsupervised Machine Learning Approach to Assessing Designer Performance During Physical Prototyping

    Source: Journal of Computing and Information Science in Engineering:;2018:;volume( 018 ):;issue: 001::page 11002
    Author:
    Dering, Matthew L.
    ,
    Tucker, Conrad S.
    ,
    Kumara, Soundar
    DOI: 10.1115/1.4037434
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: An important part of the engineering design process is prototyping, where designers build and test their designs. This process is typically iterative, time consuming, and manual in nature. For a given task, there are multiple objects that can be used, each with different time units associated with accomplishing the task. Current methods for reducing time spent during the prototyping process have focused primarily on optimizing designer to designer interactions, as opposed to designer to tool interactions. Advancements in commercially available sensing systems (e.g., the Kinect) and machine learning algorithms have opened the pathway toward real-time observation of designer's behavior in engineering workspaces during prototype construction. Toward this end, this work hypothesizes that an object O being used for task i is distinguishable from object O being used for task j, where i is the correct task and j is the incorrect task. The contributions of this work are: (i) the ability to recognize these objects in a free roaming engineering workshop environment and (ii) the ability to distinguish between the correct and incorrect use of objects used during a prototyping task. By distinguishing the difference between correct and incorrect uses, incorrect behavior (which often results in wasted time and materials) can be detected and quickly corrected. The method presented in this work learns as designers use objects, and infers the proper way to use them during prototyping. In order to demonstrate the effectiveness of the proposed method, a case study is presented in which participants in an engineering design workshop are asked to perform correct and incorrect tasks with a tool. The participants' movements are analyzed by an unsupervised clustering algorithm to determine if there is a statistical difference between tasks being performed correctly and incorrectly. Clusters which are a plurality incorrect are found to be significantly distinct for each node considered by the method, each with p ≪ 0.001.
    • Download: (1.862Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      An Unsupervised Machine Learning Approach to Assessing Designer Performance During Physical Prototyping

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4253809
    Collections
    • Journal of Computing and Information Science in Engineering

    Show full item record

    contributor authorDering, Matthew L.
    contributor authorTucker, Conrad S.
    contributor authorKumara, Soundar
    date accessioned2019-02-28T11:12:20Z
    date available2019-02-28T11:12:20Z
    date copyright11/13/2017 12:00:00 AM
    date issued2018
    identifier issn1530-9827
    identifier otherjcise_018_01_011002.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4253809
    description abstractAn important part of the engineering design process is prototyping, where designers build and test their designs. This process is typically iterative, time consuming, and manual in nature. For a given task, there are multiple objects that can be used, each with different time units associated with accomplishing the task. Current methods for reducing time spent during the prototyping process have focused primarily on optimizing designer to designer interactions, as opposed to designer to tool interactions. Advancements in commercially available sensing systems (e.g., the Kinect) and machine learning algorithms have opened the pathway toward real-time observation of designer's behavior in engineering workspaces during prototype construction. Toward this end, this work hypothesizes that an object O being used for task i is distinguishable from object O being used for task j, where i is the correct task and j is the incorrect task. The contributions of this work are: (i) the ability to recognize these objects in a free roaming engineering workshop environment and (ii) the ability to distinguish between the correct and incorrect use of objects used during a prototyping task. By distinguishing the difference between correct and incorrect uses, incorrect behavior (which often results in wasted time and materials) can be detected and quickly corrected. The method presented in this work learns as designers use objects, and infers the proper way to use them during prototyping. In order to demonstrate the effectiveness of the proposed method, a case study is presented in which participants in an engineering design workshop are asked to perform correct and incorrect tasks with a tool. The participants' movements are analyzed by an unsupervised clustering algorithm to determine if there is a statistical difference between tasks being performed correctly and incorrectly. Clusters which are a plurality incorrect are found to be significantly distinct for each node considered by the method, each with p ≪ 0.001.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleAn Unsupervised Machine Learning Approach to Assessing Designer Performance During Physical Prototyping
    typeJournal Paper
    journal volume18
    journal issue1
    journal titleJournal of Computing and Information Science in Engineering
    identifier doi10.1115/1.4037434
    journal fristpage11002
    journal lastpage011002-10
    treeJournal of Computing and Information Science in Engineering:;2018:;volume( 018 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian