YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Computational and Nonlinear Dynamics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Computational and Nonlinear Dynamics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Curvature Expressions for the Large Displacement Analysis of Planar Beam Motions

    Source: Journal of Computational and Nonlinear Dynamics:;2018:;volume( 013 ):;issue: 001::page 11013
    Author:
    Zheng, Yinhuan
    ,
    Shabana, Ahmed A.
    ,
    Zhang, Dayu
    DOI: 10.1115/1.4037226
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: While several curvature expressions have been used in the literature, some of these expressions differ from basic geometry definitions and lead to kinematic coupling between bending and shear deformations. This paper uses three different elastic force formulations in order to examine the effect of the curvature definition in the large displacement analysis of beams. In the first elastic force formulation, a general continuum mechanics approach (method 1) based on the nonlinear strain–displacement relationship is used. The second approach (method 2) is based on a classical nonlinear beam theory, in which a curvature expression consistent with differential geometry and independent of the shear deformation is used. The third elastic force formulation (method 3) employs a curvature expression that depends on the shear angle. In order to examine numerically the effect of using different curvature definitions, three different planar beam elements are used. The first element (element I) is the fully parameterized absolute nodal coordinate formulation (ANCF) shear deformable beam element. The second element (element II) is an ANCF consistent rotation-based formulation (CRBF) shear deformable beam element obtained from element I by consistently replacing the position gradient vectors by rotation parameters. The third element (element III) is a low-order bilinear ANCF/CRBF finite element in which nonzero differential geometry-based curvature definition cannot be obtained because of the low order of interpolation. Numerical results are obtained using the three elastic force formulations and the three finite elements in order to shed light on the definition of bending and shear in the large displacement analysis of beams. The results obtained in this investigation show that the use of method 2, with a penalty formulation that restricts the excessive cross section deformation, can improve significantly the convergence of the ANCF finite element.
    • Download: (942.5Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Curvature Expressions for the Large Displacement Analysis of Planar Beam Motions

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4253793
    Collections
    • Journal of Computational and Nonlinear Dynamics

    Show full item record

    contributor authorZheng, Yinhuan
    contributor authorShabana, Ahmed A.
    contributor authorZhang, Dayu
    date accessioned2019-02-28T11:12:16Z
    date available2019-02-28T11:12:16Z
    date copyright10/31/2017 12:00:00 AM
    date issued2018
    identifier issn1555-1415
    identifier othercnd_013_01_011013.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4253793
    description abstractWhile several curvature expressions have been used in the literature, some of these expressions differ from basic geometry definitions and lead to kinematic coupling between bending and shear deformations. This paper uses three different elastic force formulations in order to examine the effect of the curvature definition in the large displacement analysis of beams. In the first elastic force formulation, a general continuum mechanics approach (method 1) based on the nonlinear strain–displacement relationship is used. The second approach (method 2) is based on a classical nonlinear beam theory, in which a curvature expression consistent with differential geometry and independent of the shear deformation is used. The third elastic force formulation (method 3) employs a curvature expression that depends on the shear angle. In order to examine numerically the effect of using different curvature definitions, three different planar beam elements are used. The first element (element I) is the fully parameterized absolute nodal coordinate formulation (ANCF) shear deformable beam element. The second element (element II) is an ANCF consistent rotation-based formulation (CRBF) shear deformable beam element obtained from element I by consistently replacing the position gradient vectors by rotation parameters. The third element (element III) is a low-order bilinear ANCF/CRBF finite element in which nonzero differential geometry-based curvature definition cannot be obtained because of the low order of interpolation. Numerical results are obtained using the three elastic force formulations and the three finite elements in order to shed light on the definition of bending and shear in the large displacement analysis of beams. The results obtained in this investigation show that the use of method 2, with a penalty formulation that restricts the excessive cross section deformation, can improve significantly the convergence of the ANCF finite element.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleCurvature Expressions for the Large Displacement Analysis of Planar Beam Motions
    typeJournal Paper
    journal volume13
    journal issue1
    journal titleJournal of Computational and Nonlinear Dynamics
    identifier doi10.1115/1.4037226
    journal fristpage11013
    journal lastpage011013-12
    treeJournal of Computational and Nonlinear Dynamics:;2018:;volume( 013 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian