YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Computational and Nonlinear Dynamics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Computational and Nonlinear Dynamics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Second-Order Scheme for Nonlinear Fractional Oscillators Based on Newmark-β Algorithm

    Source: Journal of Computational and Nonlinear Dynamics:;2018:;volume( 013 ):;issue: 008::page 84501
    Author:
    Liu, Q. X.
    ,
    Liu, J. K.
    ,
    Chen, Y. M.
    DOI: 10.1115/1.4040342
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This paper presents an accurate and efficient hybrid solution method, based on Newmark-β algorithm, for solving nonlinear oscillators containing fractional derivatives (FDs) of arbitrary order. Basically, this method employs a quadrature method and the Newmark-β algorithm to handle FDs and integer derivatives, respectively. To reduce the computational burden, the proposed approach provides a strategy to avoid nonlinear algebraic equations arising routinely in the Newmark-β algorithm. Numerical results show that the presented method has second-order accuracy. Importantly, it can be applied to both linear and nonlinear oscillators with FDs of arbitrary order, without losing any precision and efficiency.
    • Download: (787.9Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Second-Order Scheme for Nonlinear Fractional Oscillators Based on Newmark-β Algorithm

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4253725
    Collections
    • Journal of Computational and Nonlinear Dynamics

    Show full item record

    contributor authorLiu, Q. X.
    contributor authorLiu, J. K.
    contributor authorChen, Y. M.
    date accessioned2019-02-28T11:11:54Z
    date available2019-02-28T11:11:54Z
    date copyright6/18/2018 12:00:00 AM
    date issued2018
    identifier issn1555-1415
    identifier othercnd_013_08_084501.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4253725
    description abstractThis paper presents an accurate and efficient hybrid solution method, based on Newmark-β algorithm, for solving nonlinear oscillators containing fractional derivatives (FDs) of arbitrary order. Basically, this method employs a quadrature method and the Newmark-β algorithm to handle FDs and integer derivatives, respectively. To reduce the computational burden, the proposed approach provides a strategy to avoid nonlinear algebraic equations arising routinely in the Newmark-β algorithm. Numerical results show that the presented method has second-order accuracy. Importantly, it can be applied to both linear and nonlinear oscillators with FDs of arbitrary order, without losing any precision and efficiency.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleA Second-Order Scheme for Nonlinear Fractional Oscillators Based on Newmark-β Algorithm
    typeJournal Paper
    journal volume13
    journal issue8
    journal titleJournal of Computational and Nonlinear Dynamics
    identifier doi10.1115/1.4040342
    journal fristpage84501
    journal lastpage084501-5
    treeJournal of Computational and Nonlinear Dynamics:;2018:;volume( 013 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian