YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Computational and Nonlinear Dynamics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Computational and Nonlinear Dynamics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Stability and Stabilization of a Class of Fractional-Order Nonlinear Systems for 1 < α < 2

    Source: Journal of Computational and Nonlinear Dynamics:;2018:;volume( 013 ):;issue: 003::page 31003
    Author:
    Huang, Sunhua
    ,
    Wang, Bin
    DOI: 10.1115/1.4038443
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This study is interested in the stability and stabilization of a class of fractional-order nonlinear systems with Caputo derivatives. Based on the properties of the Laplace transform, Mittag-Leffler function, Jordan decomposition, and Grönwall's inequality, some sufficient conditions that ensure local stability and stabilization of a class of fractional-order nonlinear systems under the Caputo derivative with 1<α<2 are presented. Finally, typical instances, including the fractional-order three-dimensional (3D) nonlinear system and the fractional-order four-dimensional (4D) nonlinear hyperchaos, are implemented to demonstrate the feasibility and validity of the proposed method.
    • Download: (793.7Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Stability and Stabilization of a Class of Fractional-Order Nonlinear Systems for 1 &lt; α &lt; 2

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4253703
    Collections
    • Journal of Computational and Nonlinear Dynamics

    Show full item record

    contributor authorHuang, Sunhua
    contributor authorWang, Bin
    date accessioned2019-02-28T11:11:48Z
    date available2019-02-28T11:11:48Z
    date copyright1/10/2018 12:00:00 AM
    date issued2018
    identifier issn1555-1415
    identifier othercnd_013_03_031003.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4253703
    description abstractThis study is interested in the stability and stabilization of a class of fractional-order nonlinear systems with Caputo derivatives. Based on the properties of the Laplace transform, Mittag-Leffler function, Jordan decomposition, and Grönwall's inequality, some sufficient conditions that ensure local stability and stabilization of a class of fractional-order nonlinear systems under the Caputo derivative with 1<α<2 are presented. Finally, typical instances, including the fractional-order three-dimensional (3D) nonlinear system and the fractional-order four-dimensional (4D) nonlinear hyperchaos, are implemented to demonstrate the feasibility and validity of the proposed method.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleStability and Stabilization of a Class of Fractional-Order Nonlinear Systems for 1 < α < 2
    typeJournal Paper
    journal volume13
    journal issue3
    journal titleJournal of Computational and Nonlinear Dynamics
    identifier doi10.1115/1.4038443
    journal fristpage31003
    journal lastpage031003-8
    treeJournal of Computational and Nonlinear Dynamics:;2018:;volume( 013 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian