YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Characterizing the HeartMate II Left Ventricular Assist Device Outflow Using Particle Image Velocimetry

    Source: Journal of Biomechanical Engineering:;2018:;volume( 140 ):;issue: 007::page 71008
    Author:
    Rowlands, Grant W.
    ,
    Good, Bryan C.
    ,
    Deutsch, Steven
    ,
    Manning, Keefe B.
    DOI: 10.1115/1.4039822
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Ventricular assist devices (VADs) are implanted in patients with a diseased ventricle to maintain peripheral perfusion as a bridge-to-transplant or as destination therapy. However, some patients with continuous flow VADs (e.g., HeartMate II (HMII)) have experienced gastrointestinal (GI) bleeding, in part caused by the proteolytic cleavage or mechanical destruction of von Willebrand factor (vWF), a clotting glycoprotein. in vitro studies were performed to measure the flow located within the HMII outlet cannula under both steady and physiological conditions using particle image velocimetry (PIV). Under steady flow, a mock flow loop was used with the HMII producing a flow rate of 3.2 L/min. The physiological experiment included a pulsatile pump operated at 105 BPM with a ventricle filling volume of 50 mL and in conjunction with the HMII producing a total flow rate of 5.0 L/min. Velocity fields, Reynolds normal stresses (RNSs), and Reynolds shear stresses (RSSs) were analyzed to quantify the outlet flow's potential contribution to vWF degradation. Under both flow conditions, the HMII generated principal Reynolds stresses that are, at times, orders of magnitude higher than those needed to unfurl vWF, potentially impacting its physiological function. Under steady flow, principal RNSs were calculated to be approximately 500 Pa in the outlet cannula. Elevated Reynolds stresses were observed throughout every phase of the cardiac cycle under physiological flow with principal RNSs approaching 1500 Pa during peak systole. Prolonged exposure to these conditions may lead to acquired von Willebrand syndrome (AvWS), which is accompanied by uncontrollable bleeding episodes.
    • Download: (5.423Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Characterizing the HeartMate II Left Ventricular Assist Device Outflow Using Particle Image Velocimetry

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4253611
    Collections
    • Journal of Biomechanical Engineering

    Show full item record

    contributor authorRowlands, Grant W.
    contributor authorGood, Bryan C.
    contributor authorDeutsch, Steven
    contributor authorManning, Keefe B.
    date accessioned2019-02-28T11:11:18Z
    date available2019-02-28T11:11:18Z
    date copyright4/30/2018 12:00:00 AM
    date issued2018
    identifier issn0148-0731
    identifier otherbio_140_07_071008.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4253611
    description abstractVentricular assist devices (VADs) are implanted in patients with a diseased ventricle to maintain peripheral perfusion as a bridge-to-transplant or as destination therapy. However, some patients with continuous flow VADs (e.g., HeartMate II (HMII)) have experienced gastrointestinal (GI) bleeding, in part caused by the proteolytic cleavage or mechanical destruction of von Willebrand factor (vWF), a clotting glycoprotein. in vitro studies were performed to measure the flow located within the HMII outlet cannula under both steady and physiological conditions using particle image velocimetry (PIV). Under steady flow, a mock flow loop was used with the HMII producing a flow rate of 3.2 L/min. The physiological experiment included a pulsatile pump operated at 105 BPM with a ventricle filling volume of 50 mL and in conjunction with the HMII producing a total flow rate of 5.0 L/min. Velocity fields, Reynolds normal stresses (RNSs), and Reynolds shear stresses (RSSs) were analyzed to quantify the outlet flow's potential contribution to vWF degradation. Under both flow conditions, the HMII generated principal Reynolds stresses that are, at times, orders of magnitude higher than those needed to unfurl vWF, potentially impacting its physiological function. Under steady flow, principal RNSs were calculated to be approximately 500 Pa in the outlet cannula. Elevated Reynolds stresses were observed throughout every phase of the cardiac cycle under physiological flow with principal RNSs approaching 1500 Pa during peak systole. Prolonged exposure to these conditions may lead to acquired von Willebrand syndrome (AvWS), which is accompanied by uncontrollable bleeding episodes.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleCharacterizing the HeartMate II Left Ventricular Assist Device Outflow Using Particle Image Velocimetry
    typeJournal Paper
    journal volume140
    journal issue7
    journal titleJournal of Biomechanical Engineering
    identifier doi10.1115/1.4039822
    journal fristpage71008
    journal lastpage071008-13
    treeJournal of Biomechanical Engineering:;2018:;volume( 140 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian