YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Methods for Post Hoc Quantitative Computed Tomography Bone Density Calibration: Phantom-Only and Regression

    Source: Journal of Biomechanical Engineering:;2018:;volume( 140 ):;issue: 009::page 94501
    Author:
    Reeves, Jacob M.
    ,
    Knowles, Nikolas K.
    ,
    Athwal, George S.
    ,
    Johnson, James A.
    DOI: 10.1115/1.4040122
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Quantitative computed tomography (qCT) relies on calibrated bone mineral density data. If a calibration phantom is absent from the CT scan, post hoc calibration becomes necessary. Scanning a calibration phantom after-the-fact and applying that calibration to uncalibrated scans has been used previously. Alternatively, the estimated density is known to vary with CT settings, suggesting that it may be possible to predict the calibration terms using CT settings. This study compares a novel CT setting regression method for post hoc calibration to standard and post hoc phantom-only calibrations. Five cadaveric upper limbs were scanned at 11 combinations of peak tube voltage and current (80–140 kV and 100–300 mA) with two calibration phantoms. Density calibrations were performed for the cadaver scans, and scans of the phantoms alone. Stepwise linear regression determined if the calibration equation terms were predictable using peak tube voltage and current. Peak tube voltage, but not current, was significantly correlated with regression calibration terms. Calibration equation slope was significantly related to the type of phantom (p < 0.001), calibration method (p = 0.026), and peak tube voltage (p < 0.001), but not current (p = 1.000). The calibration equation vertical intercept was significantly related to the type of phantom (p < 0.001), and peak tube voltage (p = 0.006), but not calibration method (p = 0.682), or current (p = 0.822). Accordingly, regression can correlate peak tube voltage with density calibration terms. Suggesting that, while standard qCT calibration is preferable, regression calibration may be an acceptable post hoc method when necessary.
    • Download: (779.5Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Methods for Post Hoc Quantitative Computed Tomography Bone Density Calibration: Phantom-Only and Regression

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4253608
    Collections
    • Journal of Biomechanical Engineering

    Show full item record

    contributor authorReeves, Jacob M.
    contributor authorKnowles, Nikolas K.
    contributor authorAthwal, George S.
    contributor authorJohnson, James A.
    date accessioned2019-02-28T11:11:17Z
    date available2019-02-28T11:11:17Z
    date copyright5/24/2018 12:00:00 AM
    date issued2018
    identifier issn0148-0731
    identifier otherbio_140_09_094501.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4253608
    description abstractQuantitative computed tomography (qCT) relies on calibrated bone mineral density data. If a calibration phantom is absent from the CT scan, post hoc calibration becomes necessary. Scanning a calibration phantom after-the-fact and applying that calibration to uncalibrated scans has been used previously. Alternatively, the estimated density is known to vary with CT settings, suggesting that it may be possible to predict the calibration terms using CT settings. This study compares a novel CT setting regression method for post hoc calibration to standard and post hoc phantom-only calibrations. Five cadaveric upper limbs were scanned at 11 combinations of peak tube voltage and current (80–140 kV and 100–300 mA) with two calibration phantoms. Density calibrations were performed for the cadaver scans, and scans of the phantoms alone. Stepwise linear regression determined if the calibration equation terms were predictable using peak tube voltage and current. Peak tube voltage, but not current, was significantly correlated with regression calibration terms. Calibration equation slope was significantly related to the type of phantom (p < 0.001), calibration method (p = 0.026), and peak tube voltage (p < 0.001), but not current (p = 1.000). The calibration equation vertical intercept was significantly related to the type of phantom (p < 0.001), and peak tube voltage (p = 0.006), but not calibration method (p = 0.682), or current (p = 0.822). Accordingly, regression can correlate peak tube voltage with density calibration terms. Suggesting that, while standard qCT calibration is preferable, regression calibration may be an acceptable post hoc method when necessary.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleMethods for Post Hoc Quantitative Computed Tomography Bone Density Calibration: Phantom-Only and Regression
    typeJournal Paper
    journal volume140
    journal issue9
    journal titleJournal of Biomechanical Engineering
    identifier doi10.1115/1.4040122
    journal fristpage94501
    journal lastpage094501-6
    treeJournal of Biomechanical Engineering:;2018:;volume( 140 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian