YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Fluid–Structure Interaction Model of the Left Coronary Artery

    Source: Journal of Biomechanical Engineering:;2018:;volume( 140 ):;issue: 012::page 121006
    Author:
    Meza, Daphne
    ,
    Rubenstein, David A.
    ,
    Yin, Wei
    DOI: 10.1115/1.4040776
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: A fluid–structure interaction (FSI) model of a left anterior descending (LAD) coronary artery was developed, incorporating transient blood flow, cyclic bending motion of the artery, and myocardial contraction. The three-dimensional (3D) geometry was constructed based on a patient's computed tomography angiography (CTA) data. To simulate disease conditions, a plaque was placed within the LAD to create a 70% stenosis. The bending motion of the blood vessel was prescribed based on the LAD spatial information. The pressure induced by myocardial contraction was applied to the outside of the blood vessel wall. The fluid domain was solved using the Navier–Stokes equations. The arterial wall was defined as a nonlinear elastic, anisotropic, and incompressible material, and the mechanical behavior was described using the modified hyper-elastic Mooney–Rivlin model. The fluid (blood) and solid (vascular wall) domains were fully coupled. The simulation results demonstrated that besides vessel bending/stretching motion, myocardial contraction had a significant effect on local hemodynamics and vascular wall stress/strain distribution. It not only transiently increased blood flow velocity and fluid wall shear stress, but also changed shear stress patterns. The presence of the plaque significantly reduced vascular wall tensile strain. Compared to the coronary artery models developed previously, the current model had improved physiological relevance.
    • Download: (3.559Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Fluid–Structure Interaction Model of the Left Coronary Artery

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4253574
    Collections
    • Journal of Biomechanical Engineering

    Show full item record

    contributor authorMeza, Daphne
    contributor authorRubenstein, David A.
    contributor authorYin, Wei
    date accessioned2019-02-28T11:11:06Z
    date available2019-02-28T11:11:06Z
    date copyright9/25/2018 12:00:00 AM
    date issued2018
    identifier issn0148-0731
    identifier otherbio_140_12_121006.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4253574
    description abstractA fluid–structure interaction (FSI) model of a left anterior descending (LAD) coronary artery was developed, incorporating transient blood flow, cyclic bending motion of the artery, and myocardial contraction. The three-dimensional (3D) geometry was constructed based on a patient's computed tomography angiography (CTA) data. To simulate disease conditions, a plaque was placed within the LAD to create a 70% stenosis. The bending motion of the blood vessel was prescribed based on the LAD spatial information. The pressure induced by myocardial contraction was applied to the outside of the blood vessel wall. The fluid domain was solved using the Navier–Stokes equations. The arterial wall was defined as a nonlinear elastic, anisotropic, and incompressible material, and the mechanical behavior was described using the modified hyper-elastic Mooney–Rivlin model. The fluid (blood) and solid (vascular wall) domains were fully coupled. The simulation results demonstrated that besides vessel bending/stretching motion, myocardial contraction had a significant effect on local hemodynamics and vascular wall stress/strain distribution. It not only transiently increased blood flow velocity and fluid wall shear stress, but also changed shear stress patterns. The presence of the plaque significantly reduced vascular wall tensile strain. Compared to the coronary artery models developed previously, the current model had improved physiological relevance.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleA Fluid–Structure Interaction Model of the Left Coronary Artery
    typeJournal Paper
    journal volume140
    journal issue12
    journal titleJournal of Biomechanical Engineering
    identifier doi10.1115/1.4040776
    journal fristpage121006
    journal lastpage121006-8
    treeJournal of Biomechanical Engineering:;2018:;volume( 140 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian