YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Muscle Function and Coordination of Amputee Stair Ascent

    Source: Journal of Biomechanical Engineering:;2018:;volume( 140 ):;issue: 012::page 121004
    Author:
    Harper, Nicole G.
    ,
    Wilken, Jason M.
    ,
    Neptune, Richard R.
    DOI: 10.1115/1.4040772
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Ascending stairs is challenging following transtibial amputation due to the loss of the ankle muscles, which are critical to human movement. Efforts to improve stair ascent following amputation are hindered by the limited understanding of how the prosthesis and remaining muscles contribute to stair ascent. This study developed a three-dimensional (3D) muscle-actuated forward dynamics simulation of amputee stair ascent to identify the contributions of individual muscles and the passive prosthesis to the biomechanical subtasks of stair ascent. The prosthesis was found to provide vertical propulsion throughout stair ascent, similar to nonamputee plantarflexors. However, the timing differed considerably. The prosthesis also contributed to braking, similar to the nonamputee soleus, but to a greater extent. However, the prosthesis was unable to replicate the functions of nonamputee gastrocnemius, which contributes to forward propulsion during the second half of stance and leg swing initiation. To compensate, the hamstrings and vasti of the residual leg increased their contributions to forward propulsion during the first and second halves of stance, respectively. The prosthesis also contributed to medial control, consistent with the nonamputee soleus but not gastrocnemius. Therefore, prosthesis designs that provide additional vertical propulsion as well as forward propulsion, lateral control, and leg swing initiation at appropriate points in the gait cycle could improve amputee stair ascent. However, because nonamputee soleus and gastrocnemius contribute oppositely to many subtasks, it may be necessary to couple the prosthesis, which functions most similarly to soleus, with targeted rehabilitation programs focused on muscle groups that can compensate for gastrocnemius.
    • Download: (2.011Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Muscle Function and Coordination of Amputee Stair Ascent

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4253536
    Collections
    • Journal of Biomechanical Engineering

    Show full item record

    contributor authorHarper, Nicole G.
    contributor authorWilken, Jason M.
    contributor authorNeptune, Richard R.
    date accessioned2019-02-28T11:10:52Z
    date available2019-02-28T11:10:52Z
    date copyright9/25/2018 12:00:00 AM
    date issued2018
    identifier issn0148-0731
    identifier otherbio_140_12_121004.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4253536
    description abstractAscending stairs is challenging following transtibial amputation due to the loss of the ankle muscles, which are critical to human movement. Efforts to improve stair ascent following amputation are hindered by the limited understanding of how the prosthesis and remaining muscles contribute to stair ascent. This study developed a three-dimensional (3D) muscle-actuated forward dynamics simulation of amputee stair ascent to identify the contributions of individual muscles and the passive prosthesis to the biomechanical subtasks of stair ascent. The prosthesis was found to provide vertical propulsion throughout stair ascent, similar to nonamputee plantarflexors. However, the timing differed considerably. The prosthesis also contributed to braking, similar to the nonamputee soleus, but to a greater extent. However, the prosthesis was unable to replicate the functions of nonamputee gastrocnemius, which contributes to forward propulsion during the second half of stance and leg swing initiation. To compensate, the hamstrings and vasti of the residual leg increased their contributions to forward propulsion during the first and second halves of stance, respectively. The prosthesis also contributed to medial control, consistent with the nonamputee soleus but not gastrocnemius. Therefore, prosthesis designs that provide additional vertical propulsion as well as forward propulsion, lateral control, and leg swing initiation at appropriate points in the gait cycle could improve amputee stair ascent. However, because nonamputee soleus and gastrocnemius contribute oppositely to many subtasks, it may be necessary to couple the prosthesis, which functions most similarly to soleus, with targeted rehabilitation programs focused on muscle groups that can compensate for gastrocnemius.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleMuscle Function and Coordination of Amputee Stair Ascent
    typeJournal Paper
    journal volume140
    journal issue12
    journal titleJournal of Biomechanical Engineering
    identifier doi10.1115/1.4040772
    journal fristpage121004
    journal lastpage121004-10
    treeJournal of Biomechanical Engineering:;2018:;volume( 140 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian