YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Flow–Structure Interaction Simulations of the Aortic Heart Valve at Physiologic Conditions: The Role of Tissue Constitutive Model

    Source: Journal of Biomechanical Engineering:;2018:;volume( 140 ):;issue: 004::page 41003
    Author:
    Gilmanov, Anvar
    ,
    Stolarski, Henryk
    ,
    Sotiropoulos, Fotis
    DOI: 10.1115/1.4038885
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The blood flow patterns in the region around the aortic valve depend on the geometry of the aorta and on the complex flow–structure interaction between the pulsatile flow and the valve leaflets. Consequently, the flow depends strongly on the constitutive properties of the tissue, which can be expected to vary between healthy and diseased heart valves or native and prosthetic valves. The main goal of this work is to qualitatively demonstrate that the choice of the constitutive model of the aortic valve is critical in analysis of heart hemodynamics. To accomplish that two different constitutive models were used in curvilinear immersed boundary–finite element–fluid–structure interaction (CURVIB-FE-FSI) method developed by Gilmanov et al. (2015, “A Numerical Approach for Simulating Fluid Structure Interaction of Flexible Thin Shells Undergoing Arbitrarily Large Deformations in Complex Domains,” J. Comput. Phys., 300, pp. 814–843.) to simulate an aortic valve in an anatomic aorta at physiologic conditions. The two constitutive models are: (1) the Saint-Venant (StV) model and (2) the modified May-Newman&Yin (MNY) model. The MNY model is more general and includes nonlinear, anisotropic effects. It is appropriate to model the behavior of both prosthetic and biological tissue including native valves. Both models are employed to carry out FSI simulations of the same valve in the same aorta anatomy. The computed results reveal dramatic differences in both the vorticity dynamics in the aortic sinus and the wall shear-stress patterns on the aortic valve leaflets and underscore the importance of tissue constitutive models for clinically relevant simulations of aortic valves.
    • Download: (1.594Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Flow–Structure Interaction Simulations of the Aortic Heart Valve at Physiologic Conditions: The Role of Tissue Constitutive Model

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4253527
    Collections
    • Journal of Biomechanical Engineering

    Show full item record

    contributor authorGilmanov, Anvar
    contributor authorStolarski, Henryk
    contributor authorSotiropoulos, Fotis
    date accessioned2019-02-28T11:10:49Z
    date available2019-02-28T11:10:49Z
    date copyright1/23/2018 12:00:00 AM
    date issued2018
    identifier issn0148-0731
    identifier otherbio_140_04_041003.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4253527
    description abstractThe blood flow patterns in the region around the aortic valve depend on the geometry of the aorta and on the complex flow–structure interaction between the pulsatile flow and the valve leaflets. Consequently, the flow depends strongly on the constitutive properties of the tissue, which can be expected to vary between healthy and diseased heart valves or native and prosthetic valves. The main goal of this work is to qualitatively demonstrate that the choice of the constitutive model of the aortic valve is critical in analysis of heart hemodynamics. To accomplish that two different constitutive models were used in curvilinear immersed boundary–finite element–fluid–structure interaction (CURVIB-FE-FSI) method developed by Gilmanov et al. (2015, “A Numerical Approach for Simulating Fluid Structure Interaction of Flexible Thin Shells Undergoing Arbitrarily Large Deformations in Complex Domains,” J. Comput. Phys., 300, pp. 814–843.) to simulate an aortic valve in an anatomic aorta at physiologic conditions. The two constitutive models are: (1) the Saint-Venant (StV) model and (2) the modified May-Newman&Yin (MNY) model. The MNY model is more general and includes nonlinear, anisotropic effects. It is appropriate to model the behavior of both prosthetic and biological tissue including native valves. Both models are employed to carry out FSI simulations of the same valve in the same aorta anatomy. The computed results reveal dramatic differences in both the vorticity dynamics in the aortic sinus and the wall shear-stress patterns on the aortic valve leaflets and underscore the importance of tissue constitutive models for clinically relevant simulations of aortic valves.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleFlow–Structure Interaction Simulations of the Aortic Heart Valve at Physiologic Conditions: The Role of Tissue Constitutive Model
    typeJournal Paper
    journal volume140
    journal issue4
    journal titleJournal of Biomechanical Engineering
    identifier doi10.1115/1.4038885
    journal fristpage41003
    journal lastpage041003-9
    treeJournal of Biomechanical Engineering:;2018:;volume( 140 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian