YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Inertial Properties of Football Helmets

    Source: Journal of Biomechanical Engineering:;2018:;volume( 140 ):;issue: 006::page 64501
    Author:
    Funk, James R.
    ,
    Quesada, Roberto E.
    ,
    Miles, Alexander M.
    ,
    Crandall, Jeff R.
    DOI: 10.1115/1.4039673
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The inertial properties of a helmet play an important role in both athletic performance and head protection. In this study, we measured the inertial properties of 37 football helmets, a National Operating Committee on Standards for Athletic Equipment (NOCSAE) size 7¼ headform, and a 50th percentile male Hybrid III dummy head. The helmet measurements were taken with the helmets placed on the Hybrid III dummy head. The center of gravity and moment of inertia were measured about six axes (x, y, z, xy, yz, and xz), allowing for a complete description of the inertial properties of the head and helmets. Total helmet mass averaged 1834±231 g, split between the shell (1377±200 g) and the facemask (457±101 g). On average, the football helmets weighed 41±5% as much as the Hybrid III dummy head. The center of gravity of the helmeted head was 1.1±3.0 mm anterior and 10.3±1.9 mm superior to the center of gravity of the bare head. The moment of inertia of the helmeted head was approximately 2.2±0.2 times greater than the bare head about all axes.
    • Download: (1.533Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Inertial Properties of Football Helmets

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4253498
    Collections
    • Journal of Biomechanical Engineering

    Show full item record

    contributor authorFunk, James R.
    contributor authorQuesada, Roberto E.
    contributor authorMiles, Alexander M.
    contributor authorCrandall, Jeff R.
    date accessioned2019-02-28T11:10:39Z
    date available2019-02-28T11:10:39Z
    date copyright4/30/2018 12:00:00 AM
    date issued2018
    identifier issn0148-0731
    identifier otherbio_140_06_064501.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4253498
    description abstractThe inertial properties of a helmet play an important role in both athletic performance and head protection. In this study, we measured the inertial properties of 37 football helmets, a National Operating Committee on Standards for Athletic Equipment (NOCSAE) size 7¼ headform, and a 50th percentile male Hybrid III dummy head. The helmet measurements were taken with the helmets placed on the Hybrid III dummy head. The center of gravity and moment of inertia were measured about six axes (x, y, z, xy, yz, and xz), allowing for a complete description of the inertial properties of the head and helmets. Total helmet mass averaged 1834±231 g, split between the shell (1377±200 g) and the facemask (457±101 g). On average, the football helmets weighed 41±5% as much as the Hybrid III dummy head. The center of gravity of the helmeted head was 1.1±3.0 mm anterior and 10.3±1.9 mm superior to the center of gravity of the bare head. The moment of inertia of the helmeted head was approximately 2.2±0.2 times greater than the bare head about all axes.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleInertial Properties of Football Helmets
    typeJournal Paper
    journal volume140
    journal issue6
    journal titleJournal of Biomechanical Engineering
    identifier doi10.1115/1.4039673
    journal fristpage64501
    journal lastpage064501-7
    treeJournal of Biomechanical Engineering:;2018:;volume( 140 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian