YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Vibration and Acoustics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Vibration and Acoustics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Voltage-Induced Snap-Through of an Asymmetrically Laminated, Piezoelectric, Thin-Film Diaphragm Micro-Actuator—Part 2: Numerical and Analytical Results

    Source: Journal of Vibration and Acoustics:;2018:;volume( 140 ):;issue: 005::page 51006
    Author:
    Tai, W. C.
    ,
    Shen, I. Y.
    DOI: 10.1115/1.4039536
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: In Part 2 of the two-paper series, the asymmetrically laminated piezoelectric shell subjected to distributed bias voltage as modeled in Part 1 is analytically and numerically investigated. Three out-of-plane degrees-of-freedom (DOFs) and a number of in-plane DOFs are retained to study the shell's snap-through phenomenon. A convergence study first confirms that the number of the in-plane DOFs retained affects not only the number of predicted equilibrium states when the bias voltage is absent but also the prediction of the critical bias voltage for snap-through to occur and the types of snap-through mechanisms. Equilibrium states can be symmetric or asymmetric, involving only a symmetric out-of-plane DOF, and additional asymmetric out-of-plane DOFs, respectively. For symmetric equilibrium states, the snap-through mechanism can evolve from the classical bidirectional snap-through and latching to a new type of snap-through that only allows snap-through in one direction (i.e., unidirectional snap-through), depending on the distribution of the bias voltage. For asymmetric equilibrium states, degeneration can occur to the asymmetric bifurcation points when the radii of curvature are equal. Finally, the unidirectional snap-through renders an explanation to the experimental findings in Part 1.
    • Download: (1.141Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Voltage-Induced Snap-Through of an Asymmetrically Laminated, Piezoelectric, Thin-Film Diaphragm Micro-Actuator—Part 2: Numerical and Analytical Results

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4253491
    Collections
    • Journal of Vibration and Acoustics

    Show full item record

    contributor authorTai, W. C.
    contributor authorShen, I. Y.
    date accessioned2019-02-28T11:10:37Z
    date available2019-02-28T11:10:37Z
    date copyright4/17/2018 12:00:00 AM
    date issued2018
    identifier issn1048-9002
    identifier othervib_140_05_051006.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4253491
    description abstractIn Part 2 of the two-paper series, the asymmetrically laminated piezoelectric shell subjected to distributed bias voltage as modeled in Part 1 is analytically and numerically investigated. Three out-of-plane degrees-of-freedom (DOFs) and a number of in-plane DOFs are retained to study the shell's snap-through phenomenon. A convergence study first confirms that the number of the in-plane DOFs retained affects not only the number of predicted equilibrium states when the bias voltage is absent but also the prediction of the critical bias voltage for snap-through to occur and the types of snap-through mechanisms. Equilibrium states can be symmetric or asymmetric, involving only a symmetric out-of-plane DOF, and additional asymmetric out-of-plane DOFs, respectively. For symmetric equilibrium states, the snap-through mechanism can evolve from the classical bidirectional snap-through and latching to a new type of snap-through that only allows snap-through in one direction (i.e., unidirectional snap-through), depending on the distribution of the bias voltage. For asymmetric equilibrium states, degeneration can occur to the asymmetric bifurcation points when the radii of curvature are equal. Finally, the unidirectional snap-through renders an explanation to the experimental findings in Part 1.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleVoltage-Induced Snap-Through of an Asymmetrically Laminated, Piezoelectric, Thin-Film Diaphragm Micro-Actuator—Part 2: Numerical and Analytical Results
    typeJournal Paper
    journal volume140
    journal issue5
    journal titleJournal of Vibration and Acoustics
    identifier doi10.1115/1.4039536
    journal fristpage51006
    journal lastpage051006-10
    treeJournal of Vibration and Acoustics:;2018:;volume( 140 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian