YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Vibration and Acoustics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Vibration and Acoustics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    An Accurate and Robust Geometrically Exact Curved Beam Formulation for Multibody Dynamic Analysis

    Source: Journal of Vibration and Acoustics:;2018:;volume( 140 ):;issue: 001::page 11012
    Author:
    Ren, H.
    ,
    Fan, W.
    ,
    Zhu, W. D.
    DOI: 10.1115/1.4037513
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: An accurate and robust geometrically exact beam formulation (GEBF) is developed to simulate the dynamics of a beam with large deformations and large rotations. The undeformed configuration of the centroid line of the beam can be either straight or curved, and cross sections of the beam can be either uniform or nonuniform with arbitrary shapes. The beam is described by the position of the centroid line and a local frame of a cross section, and a rotation vector is used to characterize the rotation of the cross section. The elastic potential energy of the beam is derived using continuum mechanics with the small-strain assumption and linear constitutive relation, and a factor naturally arises in the elastic potential energy, which can resolve a drawback of the traditional GEBF. Shape functions of the position vector and rotation vector are carefully chosen, and numerical incompatibility due to independent discretization of the position vector and rotation vector is resolved, which can avoid the shear locking problem. Numerical singularity of the rotation vector with its norm equal to zero is eliminated by Taylor polynomials. A rescaling strategy is adopted to resolve the singularity problem with its norm equal to 2mπ, where m is a nonzero integer. The current formulation can be used to handle linear and nonlinear dynamics of beams under arbitrary concentrated and distributed loads. Several benchmark problems are simulated using the current formulation to validate its accuracy, adaptiveness, and robustness.
    • Download: (2.943Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      An Accurate and Robust Geometrically Exact Curved Beam Formulation for Multibody Dynamic Analysis

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4253472
    Collections
    • Journal of Vibration and Acoustics

    Show full item record

    contributor authorRen, H.
    contributor authorFan, W.
    contributor authorZhu, W. D.
    date accessioned2019-02-28T11:10:32Z
    date available2019-02-28T11:10:32Z
    date copyright9/26/2017 12:00:00 AM
    date issued2018
    identifier issn1048-9002
    identifier othervib_140_01_011012.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4253472
    description abstractAn accurate and robust geometrically exact beam formulation (GEBF) is developed to simulate the dynamics of a beam with large deformations and large rotations. The undeformed configuration of the centroid line of the beam can be either straight or curved, and cross sections of the beam can be either uniform or nonuniform with arbitrary shapes. The beam is described by the position of the centroid line and a local frame of a cross section, and a rotation vector is used to characterize the rotation of the cross section. The elastic potential energy of the beam is derived using continuum mechanics with the small-strain assumption and linear constitutive relation, and a factor naturally arises in the elastic potential energy, which can resolve a drawback of the traditional GEBF. Shape functions of the position vector and rotation vector are carefully chosen, and numerical incompatibility due to independent discretization of the position vector and rotation vector is resolved, which can avoid the shear locking problem. Numerical singularity of the rotation vector with its norm equal to zero is eliminated by Taylor polynomials. A rescaling strategy is adopted to resolve the singularity problem with its norm equal to 2mπ, where m is a nonzero integer. The current formulation can be used to handle linear and nonlinear dynamics of beams under arbitrary concentrated and distributed loads. Several benchmark problems are simulated using the current formulation to validate its accuracy, adaptiveness, and robustness.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleAn Accurate and Robust Geometrically Exact Curved Beam Formulation for Multibody Dynamic Analysis
    typeJournal Paper
    journal volume140
    journal issue1
    journal titleJournal of Vibration and Acoustics
    identifier doi10.1115/1.4037513
    journal fristpage11012
    journal lastpage011012-13
    treeJournal of Vibration and Acoustics:;2018:;volume( 140 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian