YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Vibration and Acoustics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Vibration and Acoustics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Prediction of Rotordynamic Performance of Smooth Stator-Grooved Rotor Liquid Annular Seals Utilizing Computational Fluid Dynamics

    Source: Journal of Vibration and Acoustics:;2018:;volume( 140 ):;issue: 003::page 31002
    Author:
    Mortazavi, Farzam
    ,
    Palazzolo, Alan
    DOI: 10.1115/1.4038437
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Circumferentially grooved, annular liquid seals typically exhibit good whirl frequency ratios (WFRs) and leakage reduction, yet their low effective damping can lead to instability. The current study investigates the rotordynamic behavior of a 15-step groove-on-rotor annular liquid seal by means of computational fluid dynamics (CFD), in contrast to the previous studies which focused on a groove-on-stator geometry. The seal dimensions and working conditions have been selected based on experiments of Moreland and Childs (2016, “Influence of Pre-Swirl and Eccentricity in Smooth Stator/Grooved Rotor Liquid Annular Seals, Measured Static and Rotordynamic Characteristics,” M.Sc. thesis, Texas A&M University, College Station, TX). The frequency ratios as high as four have been studied. Implementation of pressure-pressure inlet and outlet conditions make the need for loss coefficients at the entrance and exit of the seal redundant. A computationally efficient quasi-steady approach is used to obtain impedance curves as functions of the excitation frequency. The effectiveness of steady-state CFD approach is validated by comparison with the experimental results of Moreland and Childs. Results show good agreement in terms of leakage, preswirl ratio (PSR), and rotordynamic coefficients. It was found that PSR will be about 0.3–0.4 at the entrance of the seal in the case of radial injection, and outlet swirl ratio (OSR) always converges to values near 0.5 for current seal and operational conditions. The negative value of direct stiffness coefficients, large cross-coupled stiffness coefficients, and small direct damping coefficients explains the destabilizing nature of these seals. Finally, the influence of surface roughness on leakage, PSR, OSR, and stiffness coefficients is discussed.
    • Download: (1.913Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Prediction of Rotordynamic Performance of Smooth Stator-Grooved Rotor Liquid Annular Seals Utilizing Computational Fluid Dynamics

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4253463
    Collections
    • Journal of Vibration and Acoustics

    Show full item record

    contributor authorMortazavi, Farzam
    contributor authorPalazzolo, Alan
    date accessioned2019-02-28T11:10:29Z
    date available2019-02-28T11:10:29Z
    date copyright12/12/2017 12:00:00 AM
    date issued2018
    identifier issn1048-9002
    identifier othervib_140_03_031002.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4253463
    description abstractCircumferentially grooved, annular liquid seals typically exhibit good whirl frequency ratios (WFRs) and leakage reduction, yet their low effective damping can lead to instability. The current study investigates the rotordynamic behavior of a 15-step groove-on-rotor annular liquid seal by means of computational fluid dynamics (CFD), in contrast to the previous studies which focused on a groove-on-stator geometry. The seal dimensions and working conditions have been selected based on experiments of Moreland and Childs (2016, “Influence of Pre-Swirl and Eccentricity in Smooth Stator/Grooved Rotor Liquid Annular Seals, Measured Static and Rotordynamic Characteristics,” M.Sc. thesis, Texas A&M University, College Station, TX). The frequency ratios as high as four have been studied. Implementation of pressure-pressure inlet and outlet conditions make the need for loss coefficients at the entrance and exit of the seal redundant. A computationally efficient quasi-steady approach is used to obtain impedance curves as functions of the excitation frequency. The effectiveness of steady-state CFD approach is validated by comparison with the experimental results of Moreland and Childs. Results show good agreement in terms of leakage, preswirl ratio (PSR), and rotordynamic coefficients. It was found that PSR will be about 0.3–0.4 at the entrance of the seal in the case of radial injection, and outlet swirl ratio (OSR) always converges to values near 0.5 for current seal and operational conditions. The negative value of direct stiffness coefficients, large cross-coupled stiffness coefficients, and small direct damping coefficients explains the destabilizing nature of these seals. Finally, the influence of surface roughness on leakage, PSR, OSR, and stiffness coefficients is discussed.
    publisherThe American Society of Mechanical Engineers (ASME)
    titlePrediction of Rotordynamic Performance of Smooth Stator-Grooved Rotor Liquid Annular Seals Utilizing Computational Fluid Dynamics
    typeJournal Paper
    journal volume140
    journal issue3
    journal titleJournal of Vibration and Acoustics
    identifier doi10.1115/1.4038437
    journal fristpage31002
    journal lastpage031002-9
    treeJournal of Vibration and Acoustics:;2018:;volume( 140 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian