YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Vibration and Acoustics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Vibration and Acoustics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Evaluation of Meniscal Mechanics and Proteoglycan Content in a Modified Anterior Cruciate Ligament Transection Model

    Source: Journal of Vibration and Acoustics:;2018:;volume( 140 ):;issue: 002::page 27001
    Author:
    Asami, Toshihiko
    DOI: 10.1115/1.4038108
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: In noncontact annular labyrinth seals used in turbomachinery, fluid prerotation in the direction of shaft rotation effectively increases fluid velocity in the circumferential direction and generates fluid forces with potential destabilizing effects to be exerted on the rotor. Swirl brakes are typically employed to reduce the fluid prerotation at the inlet of the seal. The inlet flow separates as it follows the swirl brakes, and the ratio between tangential component of the velocity at the seal, and the velocity of the rotor surface varies consequently. Effective swirl brakes can significantly suppress the destabilizing fluid forces as it is effectively reducing the tangential velocity. The literature shows that leakage rate can also be reduced by using swirl brakes with “negative-swirl.” In this study, a labyrinth seal with inlet swirl brakes is selected from the literature and considered the baseline design. The seal performance is evaluated using ANSYS-cfx. The design of experiments (DOEs) approach is used to investigate the effects of various design variables on the seal performance. The design space consists of the swirl brake's length, width, curvature at the ends, the tilt angle, as well as the number of swirl brakes in the circumferential direction. Simple random sampling method with Euclidean distances for the design matrix is used to generate the design points. Steady-state computational fluid dynamics simulations are then performed for each design point to analyze the performance of the swirl brakes. Quadratic polynomial fitting is used to evaluate the sensitivity of the average circumferential velocity with respect to the design variables, which gives a qualitative estimation for the performance of the swirl brakes. These results assist in creating a better understanding of which design variables are critical and more effective in reduction of the destabilizing forces acting on the rotor, and thus will support the swirl brake design for annular pressure seals.
    • Download: (24.59Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Evaluation of Meniscal Mechanics and Proteoglycan Content in a Modified Anterior Cruciate Ligament Transection Model

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4253400
    Collections
    • Journal of Vibration and Acoustics

    Show full item record

    contributor authorAsami, Toshihiko
    date accessioned2019-02-28T11:10:08Z
    date available2019-02-28T11:10:08Z
    date copyright10/20/2017 12:00:00 AM
    date issued2018
    identifier issn1048-9002
    identifier othervib_140_02_027001.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4253400
    description abstractIn noncontact annular labyrinth seals used in turbomachinery, fluid prerotation in the direction of shaft rotation effectively increases fluid velocity in the circumferential direction and generates fluid forces with potential destabilizing effects to be exerted on the rotor. Swirl brakes are typically employed to reduce the fluid prerotation at the inlet of the seal. The inlet flow separates as it follows the swirl brakes, and the ratio between tangential component of the velocity at the seal, and the velocity of the rotor surface varies consequently. Effective swirl brakes can significantly suppress the destabilizing fluid forces as it is effectively reducing the tangential velocity. The literature shows that leakage rate can also be reduced by using swirl brakes with “negative-swirl.” In this study, a labyrinth seal with inlet swirl brakes is selected from the literature and considered the baseline design. The seal performance is evaluated using ANSYS-cfx. The design of experiments (DOEs) approach is used to investigate the effects of various design variables on the seal performance. The design space consists of the swirl brake's length, width, curvature at the ends, the tilt angle, as well as the number of swirl brakes in the circumferential direction. Simple random sampling method with Euclidean distances for the design matrix is used to generate the design points. Steady-state computational fluid dynamics simulations are then performed for each design point to analyze the performance of the swirl brakes. Quadratic polynomial fitting is used to evaluate the sensitivity of the average circumferential velocity with respect to the design variables, which gives a qualitative estimation for the performance of the swirl brakes. These results assist in creating a better understanding of which design variables are critical and more effective in reduction of the destabilizing forces acting on the rotor, and thus will support the swirl brake design for annular pressure seals.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleEvaluation of Meniscal Mechanics and Proteoglycan Content in a Modified Anterior Cruciate Ligament Transection Model
    typeJournal Paper
    journal volume140
    journal issue2
    journal titleJournal of Vibration and Acoustics
    identifier doi10.1115/1.4038108
    journal fristpage27001
    journal lastpage027001-1
    treeJournal of Vibration and Acoustics:;2018:;volume( 140 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian