YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Thermodynamic Model to Quantify the Impact of Cooling Improvements on Gas Turbine Efficiency

    Source: Journal of Turbomachinery:;2018:;volume 140:;issue 003::page 31007
    Author:
    Uysal, Selcuk Can
    ,
    Liese, Eric
    ,
    Nix, Andrew C.
    ,
    Black, James
    DOI: 10.1115/1.4038614
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Cooling of turbine hot-gas-path components can increase engine efficiency, reduce emissions, and extend engine life. As cooling technologies evolved, numerous blade cooling geometries have been and continue to be proposed by researchers and engine builders for internal and external blade and vane cooling. However, the impact of these improved cooling configurations on overall engine performance is the ultimate metric. There is no assurance that obtaining higher cooling performance for an individual cooling technique will result in better turbine performance because of the introduction of additional second law losses, e.g., exergy loss from blade heat transfer, cooling air friction losses, and fluid mixing, and thus, the higher cooling performance might not always be the best solution to improve efficiency. To quantify the effect of different internal and external blade cooling techniques and their combinations on engine performance, a cooled engine model has been developed for industrial gas turbines and aero-engines using MATLAB Simulink. The model has the flexibility to be used for both engine types and consists of uncooled on-design, turbomachinery design, and a cooled off-design analysis in order to evaluate the engine performance parameters by using operating conditions, polytropic efficiencies, material information, and cooling system information. The cooling analysis algorithm involves a second law analysis to calculate losses from the cooling technique applied. The effects of variations in engine parameters such as turbine inlet temperature, by-pass ratio, and operating temperature are studied. The impact of variations in metal Biot number, thermal barrier coating (TBC) Biot number, film cooling effectiveness, internal cooling effectiveness, and maximum allowable blade temperature on engine performance parameters are analyzed. Possible design recommendations based on these variations, and direction of use of this tool for new cooling design validation, are presented.
    • Download: (2.209Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Thermodynamic Model to Quantify the Impact of Cooling Improvements on Gas Turbine Efficiency

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4253371
    Collections
    • Journal of Turbomachinery

    Show full item record

    contributor authorUysal, Selcuk Can
    contributor authorLiese, Eric
    contributor authorNix, Andrew C.
    contributor authorBlack, James
    date accessioned2019-02-28T11:09:58Z
    date available2019-02-28T11:09:58Z
    date copyright12/20/2017 12:00:00 AM
    date issued2018
    identifier issn0889-504X
    identifier otherturbo_140_03_031007.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4253371
    description abstractCooling of turbine hot-gas-path components can increase engine efficiency, reduce emissions, and extend engine life. As cooling technologies evolved, numerous blade cooling geometries have been and continue to be proposed by researchers and engine builders for internal and external blade and vane cooling. However, the impact of these improved cooling configurations on overall engine performance is the ultimate metric. There is no assurance that obtaining higher cooling performance for an individual cooling technique will result in better turbine performance because of the introduction of additional second law losses, e.g., exergy loss from blade heat transfer, cooling air friction losses, and fluid mixing, and thus, the higher cooling performance might not always be the best solution to improve efficiency. To quantify the effect of different internal and external blade cooling techniques and their combinations on engine performance, a cooled engine model has been developed for industrial gas turbines and aero-engines using MATLAB Simulink. The model has the flexibility to be used for both engine types and consists of uncooled on-design, turbomachinery design, and a cooled off-design analysis in order to evaluate the engine performance parameters by using operating conditions, polytropic efficiencies, material information, and cooling system information. The cooling analysis algorithm involves a second law analysis to calculate losses from the cooling technique applied. The effects of variations in engine parameters such as turbine inlet temperature, by-pass ratio, and operating temperature are studied. The impact of variations in metal Biot number, thermal barrier coating (TBC) Biot number, film cooling effectiveness, internal cooling effectiveness, and maximum allowable blade temperature on engine performance parameters are analyzed. Possible design recommendations based on these variations, and direction of use of this tool for new cooling design validation, are presented.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleA Thermodynamic Model to Quantify the Impact of Cooling Improvements on Gas Turbine Efficiency
    typeJournal Paper
    journal volume140
    journal issue3
    journal titleJournal of Turbomachinery
    identifier doi10.1115/1.4038614
    journal fristpage31007
    journal lastpage031007-11
    treeJournal of Turbomachinery:;2018:;volume 140:;issue 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian