YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Finite Element Study to Evaluate the Biomechanical Performance of the Spine After Augmenting Percutaneous Pedicle Screw Fixation With Kyphoplasty in the Treatment of Burst Fractures

    Source: Journal of Biomechanical Engineering:;2018:;volume( 140 ):;issue: 006::page 61005
    Author:
    Elmasry, Shady S.
    ,
    Asfour, Shihab S.
    ,
    Travascio, Francesco
    DOI: 10.1115/1.4039174
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Percutaneous pedicle screw fixation (PPSF) is a well-known minimally invasive surgery (MIS) employed in the treatment of thoracolumbar burst fractures (TBF). However, hardware failure and loss of angular correction are common limitations caused by the poor support of the anterior column of the spine. Balloon kyphoplasty (KP) is another MIS that was successfully used in the treatment of compression fractures by augmenting the injured vertebral body with cement. To overcome the limitations of stand-alone PPSF, it was suggested to augment PPSF with KP as a surgical treatment of TBF. Yet, little is known about the biomechanical alteration occurred to the spine after performing such procedure. The objective of this study was to evaluate and compare the immediate post-operative biomechanical performance of stand-alone PPSF, stand-alone-KP, and KP-augmented PPSF procedures. Novel three-dimensional (3D) finite element (FE) models of the thoracolumbar junction that describes the fractured spine and the three investigated procedures were developed and tested under mechanical loading conditions. The spinal stiffness, stresses at the implanted hardware, and the intradiscal pressure at the upper and lower segments were measured and compared. The results showed no major differences in the measured parameters between stand-alone PPSF and KP-augmented PPSF procedures, and demonstrated that the stand-alone KP may restore the stiffness of the intact spine. Accordingly, there was no immediate post-operative biomechanical advantage in augmenting PPSF with KP when compared to stand-alone PPSF, and fatigue testing may be required to evaluate the long-term biomechanical performance of such procedures.
    • Download: (2.368Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Finite Element Study to Evaluate the Biomechanical Performance of the Spine After Augmenting Percutaneous Pedicle Screw Fixation With Kyphoplasty in the Treatment of Burst Fractures

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4253343
    Collections
    • Journal of Biomechanical Engineering

    Show full item record

    contributor authorElmasry, Shady S.
    contributor authorAsfour, Shihab S.
    contributor authorTravascio, Francesco
    date accessioned2019-02-28T11:09:47Z
    date available2019-02-28T11:09:47Z
    date copyright3/21/2018 12:00:00 AM
    date issued2018
    identifier issn0148-0731
    identifier otherbio_140_06_061005.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4253343
    description abstractPercutaneous pedicle screw fixation (PPSF) is a well-known minimally invasive surgery (MIS) employed in the treatment of thoracolumbar burst fractures (TBF). However, hardware failure and loss of angular correction are common limitations caused by the poor support of the anterior column of the spine. Balloon kyphoplasty (KP) is another MIS that was successfully used in the treatment of compression fractures by augmenting the injured vertebral body with cement. To overcome the limitations of stand-alone PPSF, it was suggested to augment PPSF with KP as a surgical treatment of TBF. Yet, little is known about the biomechanical alteration occurred to the spine after performing such procedure. The objective of this study was to evaluate and compare the immediate post-operative biomechanical performance of stand-alone PPSF, stand-alone-KP, and KP-augmented PPSF procedures. Novel three-dimensional (3D) finite element (FE) models of the thoracolumbar junction that describes the fractured spine and the three investigated procedures were developed and tested under mechanical loading conditions. The spinal stiffness, stresses at the implanted hardware, and the intradiscal pressure at the upper and lower segments were measured and compared. The results showed no major differences in the measured parameters between stand-alone PPSF and KP-augmented PPSF procedures, and demonstrated that the stand-alone KP may restore the stiffness of the intact spine. Accordingly, there was no immediate post-operative biomechanical advantage in augmenting PPSF with KP when compared to stand-alone PPSF, and fatigue testing may be required to evaluate the long-term biomechanical performance of such procedures.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleFinite Element Study to Evaluate the Biomechanical Performance of the Spine After Augmenting Percutaneous Pedicle Screw Fixation With Kyphoplasty in the Treatment of Burst Fractures
    typeJournal Paper
    journal volume140
    journal issue6
    journal titleJournal of Biomechanical Engineering
    identifier doi10.1115/1.4039174
    journal fristpage61005
    journal lastpage061005-7
    treeJournal of Biomechanical Engineering:;2018:;volume( 140 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian