YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Interaction of Microcracks and Tissue Compositional Heterogeneity in Determining Fracture Resistance of Human Cortical Bone

    Source: Journal of Biomechanical Engineering:;2018:;volume( 140 ):;issue: 009::page 91003
    Author:
    Demirtas, Ahmet
    ,
    Ural, Ani
    DOI: 10.1115/1.4040123
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Recent studies demonstrated an association between atypical femoral fracture (AFF) and long-term bisphosphonate (BP) use for osteoporosis treatment. Due to BP treatment, bone undergoes alterations including increased microcrack density and reduced tissue compositional heterogeneity. However, the effect of these changes on the fracture response of bone is not well understood. As a result, the goal of the current study is to evaluate the individual and combined effects of microcracks and tissue compositional heterogeneity on fracture resistance of cortical bone using finite element modeling (FEM) of compact tension (CT) specimen tests with varying microcrack density, location, and clustering, and material heterogeneity in three different bone samples. The simulation results showed that an increase in microcrack density improved the fracture resistance irrespective of the local material property heterogeneity and microcrack distribution. A reduction in material property heterogeneity adversely affected the fracture resistance in models both with and without microcracks. When the combined changes in microcrack density and tissue material property heterogeneity representing BP treatment were evaluated, the models corresponding to BP-treated bone demonstrated reduced fracture resistance. The simulation results also showed that although microcrack location and clustering, and microstructure significantly influenced fracture resistance, the trends observed on the effect of microcrack density and tissue material property heterogeneity did not change. In summary, these results provide new information on the interaction of microcracks, tissue material property heterogeneity, and fracture resistance and may improve the understanding of the influence of mechanical changes due to prolonged BP use on the fracture behavior of cortical bone.
    • Download: (3.449Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Interaction of Microcracks and Tissue Compositional Heterogeneity in Determining Fracture Resistance of Human Cortical Bone

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4253287
    Collections
    • Journal of Biomechanical Engineering

    Show full item record

    contributor authorDemirtas, Ahmet
    contributor authorUral, Ani
    date accessioned2019-02-28T11:09:30Z
    date available2019-02-28T11:09:30Z
    date copyright5/24/2018 12:00:00 AM
    date issued2018
    identifier issn0148-0731
    identifier otherbio_140_09_091003.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4253287
    description abstractRecent studies demonstrated an association between atypical femoral fracture (AFF) and long-term bisphosphonate (BP) use for osteoporosis treatment. Due to BP treatment, bone undergoes alterations including increased microcrack density and reduced tissue compositional heterogeneity. However, the effect of these changes on the fracture response of bone is not well understood. As a result, the goal of the current study is to evaluate the individual and combined effects of microcracks and tissue compositional heterogeneity on fracture resistance of cortical bone using finite element modeling (FEM) of compact tension (CT) specimen tests with varying microcrack density, location, and clustering, and material heterogeneity in three different bone samples. The simulation results showed that an increase in microcrack density improved the fracture resistance irrespective of the local material property heterogeneity and microcrack distribution. A reduction in material property heterogeneity adversely affected the fracture resistance in models both with and without microcracks. When the combined changes in microcrack density and tissue material property heterogeneity representing BP treatment were evaluated, the models corresponding to BP-treated bone demonstrated reduced fracture resistance. The simulation results also showed that although microcrack location and clustering, and microstructure significantly influenced fracture resistance, the trends observed on the effect of microcrack density and tissue material property heterogeneity did not change. In summary, these results provide new information on the interaction of microcracks, tissue material property heterogeneity, and fracture resistance and may improve the understanding of the influence of mechanical changes due to prolonged BP use on the fracture behavior of cortical bone.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleInteraction of Microcracks and Tissue Compositional Heterogeneity in Determining Fracture Resistance of Human Cortical Bone
    typeJournal Paper
    journal volume140
    journal issue9
    journal titleJournal of Biomechanical Engineering
    identifier doi10.1115/1.4040123
    journal fristpage91003
    journal lastpage091003-10
    treeJournal of Biomechanical Engineering:;2018:;volume( 140 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian