YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Tribology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Tribology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Identification of Dynamic Characteristics of Hybrid Bump-Metal Mesh Foil Bearings

    Source: Journal of Tribology:;2018:;volume( 140 ):;issue: 005::page 51702
    Author:
    Zhao, Zilong
    ,
    Feng, Kai
    ,
    Zhao, Xueyuan
    ,
    Liu, Wanhui
    DOI: 10.1115/1.4039721
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The stability of oil-free high-speed turbo-machinery can be effectively improved by increasing the damping characteristic of the gas foil bearing (GFB). Novel hybrid bump-metal mesh foil bearings (HB-MFBs) have been previously developed. Prior experimental results show that the parallel combination of bump structure and metal mesh not only can improve the structure stiffness but also provide better damping property compared with the bump-type foil structure. To investigate the dynamic behavior of floating HB-MFBs and promote its application, this study measured the dynamic force coefficients of HB-MFBs on a rotating test rig. The vibrations of HB-MFBs with different mesh densities (40%, 32.5%, and 25%) and a generation І bump-type foil bearing (BFB) with similar size are measured under static and impact loads to estimate the bearing characteristics. Static load test results show that the linear stiffness decreases when the air film is generated (from 0 rpm to 20 krpm) but increases gradually with speed (from 20 krpm to 30 krpm, and 40 krpm). Moreover, the dynamic force coefficients of HB-MFBs indicate the significant influence of metal mesh density on bearing dynamic characteristics. The growth in block density increases the dynamic stiffness and damping coefficients of bearing. The comparison of HB-MFB (32.5% and 40%) and BFB emphasizes the good damping characteristics of HB-MFB.
    • Download: (5.008Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Identification of Dynamic Characteristics of Hybrid Bump-Metal Mesh Foil Bearings

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4253263
    Collections
    • Journal of Tribology

    Show full item record

    contributor authorZhao, Zilong
    contributor authorFeng, Kai
    contributor authorZhao, Xueyuan
    contributor authorLiu, Wanhui
    date accessioned2019-02-28T11:09:20Z
    date available2019-02-28T11:09:20Z
    date copyright4/26/2018 12:00:00 AM
    date issued2018
    identifier issn0742-4787
    identifier othertrib_140_05_051702.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4253263
    description abstractThe stability of oil-free high-speed turbo-machinery can be effectively improved by increasing the damping characteristic of the gas foil bearing (GFB). Novel hybrid bump-metal mesh foil bearings (HB-MFBs) have been previously developed. Prior experimental results show that the parallel combination of bump structure and metal mesh not only can improve the structure stiffness but also provide better damping property compared with the bump-type foil structure. To investigate the dynamic behavior of floating HB-MFBs and promote its application, this study measured the dynamic force coefficients of HB-MFBs on a rotating test rig. The vibrations of HB-MFBs with different mesh densities (40%, 32.5%, and 25%) and a generation І bump-type foil bearing (BFB) with similar size are measured under static and impact loads to estimate the bearing characteristics. Static load test results show that the linear stiffness decreases when the air film is generated (from 0 rpm to 20 krpm) but increases gradually with speed (from 20 krpm to 30 krpm, and 40 krpm). Moreover, the dynamic force coefficients of HB-MFBs indicate the significant influence of metal mesh density on bearing dynamic characteristics. The growth in block density increases the dynamic stiffness and damping coefficients of bearing. The comparison of HB-MFB (32.5% and 40%) and BFB emphasizes the good damping characteristics of HB-MFB.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleIdentification of Dynamic Characteristics of Hybrid Bump-Metal Mesh Foil Bearings
    typeJournal Paper
    journal volume140
    journal issue5
    journal titleJournal of Tribology
    identifier doi10.1115/1.4039721
    journal fristpage51702
    journal lastpage051702-12
    treeJournal of Tribology:;2018:;volume( 140 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian