The Scaffold–Articular Cartilage Interface: A Combined In Vitro and In Silico Analysis Under Controlled Loading ConditionsSource: Journal of Biomechanical Engineering:;2018:;volume( 140 ):;issue: 009::page 91002DOI: 10.1115/1.4040121Publisher: The American Society of Mechanical Engineers (ASME)
Abstract: The optimal method to integrate scaffolds with articular cartilage has not yet been identified, in part because of our lack of understanding about the mechanobiological conditions at the interface. Our objective was to quantify the effect of mechanical loading on integration between a scaffold and articular cartilage. We hypothesized that increased number of loading cycles would have a detrimental effect on interface integrity. The following models were developed: (i) an in vitro scaffold–cartilage explant system in which compressive sinusoidal loading cycles were applied for 14 days at 1 Hz, 5 days per week, for either 900, 1800, 3600, or 7200 cycles per day and (ii) an in silico inhomogeneous, biphasic finite element model (bFEM) of the scaffold–cartilage construct that was used to characterize interface micromotion, stress, and fluid flow under the prescribed loading conditions. In accordance with our hypothesis, mechanical loading significantly decreased scaffold–cartilage interface strength compared to unloaded controls regardless of the number of loading cycles. The decrease in interfacial strength can be attributed to abrupt changes in vertical displacement, fluid pressure, and compressive stresses along the interface, which reach steady-state after only 150 cycles of loading. The interfacial mechanical conditions are further complicated by the mismatch between the homogeneous properties of the scaffold and the depth-dependent properties of the articular cartilage. Finally, we suggest that mechanical conditions at the interface can be more readily modulated by increasing pre-incubation time before the load is applied, as opposed to varying the number of loading cycles.
|
Collections
Show full item record
| contributor author | Chen, Tony | |
| contributor author | McCarthy, Moira M. | |
| contributor author | Guo, Hongqiang | |
| contributor author | Warren, Russell | |
| contributor author | Maher, Suzanne A. | |
| date accessioned | 2019-02-28T11:09:10Z | |
| date available | 2019-02-28T11:09:10Z | |
| date copyright | 5/24/2018 12:00:00 AM | |
| date issued | 2018 | |
| identifier issn | 0148-0731 | |
| identifier other | bio_140_09_091002.pdf | |
| identifier uri | http://yetl.yabesh.ir/yetl1/handle/yetl/4253232 | |
| description abstract | The optimal method to integrate scaffolds with articular cartilage has not yet been identified, in part because of our lack of understanding about the mechanobiological conditions at the interface. Our objective was to quantify the effect of mechanical loading on integration between a scaffold and articular cartilage. We hypothesized that increased number of loading cycles would have a detrimental effect on interface integrity. The following models were developed: (i) an in vitro scaffold–cartilage explant system in which compressive sinusoidal loading cycles were applied for 14 days at 1 Hz, 5 days per week, for either 900, 1800, 3600, or 7200 cycles per day and (ii) an in silico inhomogeneous, biphasic finite element model (bFEM) of the scaffold–cartilage construct that was used to characterize interface micromotion, stress, and fluid flow under the prescribed loading conditions. In accordance with our hypothesis, mechanical loading significantly decreased scaffold–cartilage interface strength compared to unloaded controls regardless of the number of loading cycles. The decrease in interfacial strength can be attributed to abrupt changes in vertical displacement, fluid pressure, and compressive stresses along the interface, which reach steady-state after only 150 cycles of loading. The interfacial mechanical conditions are further complicated by the mismatch between the homogeneous properties of the scaffold and the depth-dependent properties of the articular cartilage. Finally, we suggest that mechanical conditions at the interface can be more readily modulated by increasing pre-incubation time before the load is applied, as opposed to varying the number of loading cycles. | |
| publisher | The American Society of Mechanical Engineers (ASME) | |
| title | The Scaffold–Articular Cartilage Interface: A Combined In Vitro and In Silico Analysis Under Controlled Loading Conditions | |
| type | Journal Paper | |
| journal volume | 140 | |
| journal issue | 9 | |
| journal title | Journal of Biomechanical Engineering | |
| identifier doi | 10.1115/1.4040121 | |
| journal fristpage | 91002 | |
| journal lastpage | 091002-7 | |
| tree | Journal of Biomechanical Engineering:;2018:;volume( 140 ):;issue: 009 | |
| contenttype | Fulltext |