YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Tribology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Tribology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Effect of Heat Treatment on Mechanical and Tribological Properties of Centrifugally Cast Functionally Graded Cu/Al2O3 Composite

    Source: Journal of Tribology:;2018:;volume( 140 ):;issue: 002::page 21606
    Author:
    Sam, Manu
    ,
    Radhika, N.
    DOI: 10.1115/1.4037767
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: A functionally graded Cu–10Sn–5Ni metal matrix composite (MMC) reinforced with 10 wt % of Al2O3 particles was fabricated using the centrifugal casting process with dimension Φout100 × Φin85 × 100 mm. The mechanical and wear resistance of the composite has been enhanced through heat treatment. Samples from of the inner zone (9–15 mm) were considered for heat treatment, as this zone has higher concentration of less dense hard reinforcement particles. The samples were solutionized (620 °C/60 min) and water quenched followed by aging at different temperatures (400, 450, and 550 °C) and time (1–3 h). Optimum parametric combination (450 °C, 3 h) with maximum hardness (269 HV) was considered for further analysis. Dry sliding wear experiments were conducted based on Taguchi's L27 array using parameters such as applied loads (10, 20, and 30 N), sliding distances (500, 1000, and 1500 m), and sliding velocities (1, 2, and 3 m/s). Results revealed that the wear rate increased with load and distance whereas it decreased initially and then increased with velocity. Optimum condition for maximum wear resistance was determined using signal-to-noise (S/N) ratio. Analysis of variance (ANOVA) predicted the major influential parameter as load, followed by velocity and distance. Scanning electron microscope (SEM) analysis of worn surfaces predicted the wear mechanism, observing more delamination due to increase in contact patch when applied load increased. Results infer 8% increase in hardness after heat treatment, making it suitable for load bearing applications.
    • Download: (1.329Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Effect of Heat Treatment on Mechanical and Tribological Properties of Centrifugally Cast Functionally Graded Cu/Al2O3 Composite

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4253206
    Collections
    • Journal of Tribology

    Show full item record

    contributor authorSam, Manu
    contributor authorRadhika, N.
    date accessioned2019-02-28T11:09:01Z
    date available2019-02-28T11:09:01Z
    date copyright10/6/2017 12:00:00 AM
    date issued2018
    identifier issn0742-4787
    identifier othertrib_140_02_021606.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4253206
    description abstractA functionally graded Cu–10Sn–5Ni metal matrix composite (MMC) reinforced with 10 wt % of Al2O3 particles was fabricated using the centrifugal casting process with dimension Φout100 × Φin85 × 100 mm. The mechanical and wear resistance of the composite has been enhanced through heat treatment. Samples from of the inner zone (9–15 mm) were considered for heat treatment, as this zone has higher concentration of less dense hard reinforcement particles. The samples were solutionized (620 °C/60 min) and water quenched followed by aging at different temperatures (400, 450, and 550 °C) and time (1–3 h). Optimum parametric combination (450 °C, 3 h) with maximum hardness (269 HV) was considered for further analysis. Dry sliding wear experiments were conducted based on Taguchi's L27 array using parameters such as applied loads (10, 20, and 30 N), sliding distances (500, 1000, and 1500 m), and sliding velocities (1, 2, and 3 m/s). Results revealed that the wear rate increased with load and distance whereas it decreased initially and then increased with velocity. Optimum condition for maximum wear resistance was determined using signal-to-noise (S/N) ratio. Analysis of variance (ANOVA) predicted the major influential parameter as load, followed by velocity and distance. Scanning electron microscope (SEM) analysis of worn surfaces predicted the wear mechanism, observing more delamination due to increase in contact patch when applied load increased. Results infer 8% increase in hardness after heat treatment, making it suitable for load bearing applications.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleEffect of Heat Treatment on Mechanical and Tribological Properties of Centrifugally Cast Functionally Graded Cu/Al2O3 Composite
    typeJournal Paper
    journal volume140
    journal issue2
    journal titleJournal of Tribology
    identifier doi10.1115/1.4037767
    journal fristpage21606
    journal lastpage021606-7
    treeJournal of Tribology:;2018:;volume( 140 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian