YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Tribology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Tribology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    An Analytical Dynamic Model of a Hollow Cylindrical Roller Bearing

    Source: Journal of Tribology:;2018:;volume( 140 ):;issue: 006::page 61403
    Author:
    Liu, Jing
    ,
    Shao, Yimin
    DOI: 10.1115/1.4040382
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Hollow cylindrical roller bearings (HCRBs) have obtained much attention from design engineers in bearing industries since they can perform better than solid cylindrical roller bearings (SCRBs) in centrifugal forces, contact stiffness, cooling ability, fatigue life, etc. In this study, an analytical dynamic model of a lubricated HCRB is presented to analyze the influences of the radial load, the shaft speed, and the hollowness percentage of the roller on the bearing vibrations, which cannot be formulated by the methods in the reported literature. Both the support stiffness of the shaft and the roller mass are formulated in the presented dynamic model. The hollow hole in the roller is modeled as a uniform one. Numerical results show that the hollowness percentage of the roller has a great influence on the vibrations of the roller and the inner race of the HCRB. Moreover, the vibrations of the components of the HCRB are not only determined by the hollowness percentage of the roller, but also depended on the external radial load and shaft speed. Therefore, during the design process for the hollowness percentage of the roller, the influences of the radial load and the shaft speed on the vibrations of the bearing components should be considered, except for the fatigue life. The results show that this work can give a new dynamic method for analyzing the vibrations of the HCRBs. Moreover, it can give some guidance for the design method for the HCRBs.
    • Download: (6.238Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      An Analytical Dynamic Model of a Hollow Cylindrical Roller Bearing

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4253163
    Collections
    • Journal of Tribology

    Show full item record

    contributor authorLiu, Jing
    contributor authorShao, Yimin
    date accessioned2019-02-28T11:08:45Z
    date available2019-02-28T11:08:45Z
    date copyright6/13/2018 12:00:00 AM
    date issued2018
    identifier issn0742-4787
    identifier othertrib_140_06_061403.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4253163
    description abstractHollow cylindrical roller bearings (HCRBs) have obtained much attention from design engineers in bearing industries since they can perform better than solid cylindrical roller bearings (SCRBs) in centrifugal forces, contact stiffness, cooling ability, fatigue life, etc. In this study, an analytical dynamic model of a lubricated HCRB is presented to analyze the influences of the radial load, the shaft speed, and the hollowness percentage of the roller on the bearing vibrations, which cannot be formulated by the methods in the reported literature. Both the support stiffness of the shaft and the roller mass are formulated in the presented dynamic model. The hollow hole in the roller is modeled as a uniform one. Numerical results show that the hollowness percentage of the roller has a great influence on the vibrations of the roller and the inner race of the HCRB. Moreover, the vibrations of the components of the HCRB are not only determined by the hollowness percentage of the roller, but also depended on the external radial load and shaft speed. Therefore, during the design process for the hollowness percentage of the roller, the influences of the radial load and the shaft speed on the vibrations of the bearing components should be considered, except for the fatigue life. The results show that this work can give a new dynamic method for analyzing the vibrations of the HCRBs. Moreover, it can give some guidance for the design method for the HCRBs.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleAn Analytical Dynamic Model of a Hollow Cylindrical Roller Bearing
    typeJournal Paper
    journal volume140
    journal issue6
    journal titleJournal of Tribology
    identifier doi10.1115/1.4040382
    journal fristpage61403
    journal lastpage061403-14
    treeJournal of Tribology:;2018:;volume( 140 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian