YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Tribology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Tribology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Finite Element Analysis Simulation of the Effect of Induction Hardening on Rolling Contact Fatigue

    Source: Journal of Tribology:;2018:;volume( 140 ):;issue: 006::page 61404
    Author:
    Hoa Ngan, Nguyen
    ,
    Bocher, Philippe
    DOI: 10.1115/1.4040305
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The objective of this research is to conduct a finite element analysis to better understand the effects of induction hardening on rolling contact fatigue (RCF). The finite element analysis was developed in three-dimensional to estimate the maximal loading and the positions of the crack nucleation sites in the case of cylinder contact rolling. Rolling contact with or without surface compressive residual stress (RS) were studied and compared. The RS profile was chosen to simulate the effects of an induction hardening treatment on a 48 HRC tempered AISI4340 steel component. As this hardening process not only generates a RS gradient in the treated component but also a hardness gradient (called over-tempered region), both types of gradients were introduced in the present model. RSs in compression were generated in the hard case (about 60 HRC); tension values were introduced in the over-tempered region, where hardness as low as 38 HRC were set. In order to estimate the maximal allowable loadings in the rotating cylinders to target a life of 106 cycles, a multiaxial Dang Van criterion and a shear stress fatigue limit were used in the positive and negative hydrostatic conditions, respectively. With the proposed approach, the induction hardened component was found to have a maximal allowable loading significantly higher than that obtained with a nontreated one, and it was observed that the residual tensile stress peak found in the over-tempered region could become a limiting factor for fatigue rolling contact life.
    • Download: (2.624Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Finite Element Analysis Simulation of the Effect of Induction Hardening on Rolling Contact Fatigue

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4253138
    Collections
    • Journal of Tribology

    Show full item record

    contributor authorHoa Ngan, Nguyen
    contributor authorBocher, Philippe
    date accessioned2019-02-28T11:08:37Z
    date available2019-02-28T11:08:37Z
    date copyright7/12/2018 12:00:00 AM
    date issued2018
    identifier issn0742-4787
    identifier othertrib_140_06_061404.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4253138
    description abstractThe objective of this research is to conduct a finite element analysis to better understand the effects of induction hardening on rolling contact fatigue (RCF). The finite element analysis was developed in three-dimensional to estimate the maximal loading and the positions of the crack nucleation sites in the case of cylinder contact rolling. Rolling contact with or without surface compressive residual stress (RS) were studied and compared. The RS profile was chosen to simulate the effects of an induction hardening treatment on a 48 HRC tempered AISI4340 steel component. As this hardening process not only generates a RS gradient in the treated component but also a hardness gradient (called over-tempered region), both types of gradients were introduced in the present model. RSs in compression were generated in the hard case (about 60 HRC); tension values were introduced in the over-tempered region, where hardness as low as 38 HRC were set. In order to estimate the maximal allowable loadings in the rotating cylinders to target a life of 106 cycles, a multiaxial Dang Van criterion and a shear stress fatigue limit were used in the positive and negative hydrostatic conditions, respectively. With the proposed approach, the induction hardened component was found to have a maximal allowable loading significantly higher than that obtained with a nontreated one, and it was observed that the residual tensile stress peak found in the over-tempered region could become a limiting factor for fatigue rolling contact life.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleFinite Element Analysis Simulation of the Effect of Induction Hardening on Rolling Contact Fatigue
    typeJournal Paper
    journal volume140
    journal issue6
    journal titleJournal of Tribology
    identifier doi10.1115/1.4040305
    journal fristpage61404
    journal lastpage061404-10
    treeJournal of Tribology:;2018:;volume( 140 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian