YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Offshore Mechanics and Arctic Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Offshore Mechanics and Arctic Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Computational Fluid Dynamics Simulations of Nonlinear Sloshing in a Rotating Rectangular Tank Using the Level Set Method

    Source: Journal of Offshore Mechanics and Arctic Engineering:;2018:;volume( 140 ):;issue: 006::page 61806
    Author:
    Grotle, Erlend Liavåg
    ,
    Bihs, Hans
    ,
    Æsøy, Vilmar
    ,
    Pedersen, Eilif
    DOI: 10.1115/1.4040560
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: In this paper, numerical simulations of nonlinear sloshing in rectangular tanks are presented. Model implementations in the open source software reef3d are tested, and the results are compared with experimental data from three different conditions. The interface location is compared for both linear and nonlinear sloshing. The nonlinear sloshing is simulated in both two-dimensional (2D) and three-dimensional (3D). Video images from the SPHERIC project are compared with simulations for the interface. A condition with lateral wave impacts in sloshing, with a frequency close to the natural frequency of the first mode, can be found in this case. The numerical model is solving the Reynolds-averaged Navier–Stokes (RANS) equations with the k–ω turbulence model. The level set method is used to capture the interface. Higher order discretization schemes are implemented to handle time-evolution and convective fluxes. A ghost cell method is used to account for solid boundaries and parallel computations. It is found that the limiting factor for the eddy-viscosity has significant influence in the nonlinear sloshing cases. As the sloshing becomes more violent, the increased strain at the gas–liquid interface overproduces turbulence energy with unrealistically high damping of the motion. Three-dimensional simulations show slightly better comparison than 2D. Due to nonlinearities and small damping, the time to reach steady-state may take several cycles. The last case shows promising results for the global motion. As expected, the breakup of the liquid surface makes it difficult to resolve each phase. But overall, the numerical model predicts the sloshing motion reasonably well.
    • Download: (5.466Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Computational Fluid Dynamics Simulations of Nonlinear Sloshing in a Rotating Rectangular Tank Using the Level Set Method

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4252671
    Collections
    • Journal of Offshore Mechanics and Arctic Engineering

    Show full item record

    contributor authorGrotle, Erlend Liavåg
    contributor authorBihs, Hans
    contributor authorÆsøy, Vilmar
    contributor authorPedersen, Eilif
    date accessioned2019-02-28T11:06:01Z
    date available2019-02-28T11:06:01Z
    date copyright9/12/2018 12:00:00 AM
    date issued2018
    identifier issn0892-7219
    identifier otheromae_140_06_061806.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4252671
    description abstractIn this paper, numerical simulations of nonlinear sloshing in rectangular tanks are presented. Model implementations in the open source software reef3d are tested, and the results are compared with experimental data from three different conditions. The interface location is compared for both linear and nonlinear sloshing. The nonlinear sloshing is simulated in both two-dimensional (2D) and three-dimensional (3D). Video images from the SPHERIC project are compared with simulations for the interface. A condition with lateral wave impacts in sloshing, with a frequency close to the natural frequency of the first mode, can be found in this case. The numerical model is solving the Reynolds-averaged Navier–Stokes (RANS) equations with the k–ω turbulence model. The level set method is used to capture the interface. Higher order discretization schemes are implemented to handle time-evolution and convective fluxes. A ghost cell method is used to account for solid boundaries and parallel computations. It is found that the limiting factor for the eddy-viscosity has significant influence in the nonlinear sloshing cases. As the sloshing becomes more violent, the increased strain at the gas–liquid interface overproduces turbulence energy with unrealistically high damping of the motion. Three-dimensional simulations show slightly better comparison than 2D. Due to nonlinearities and small damping, the time to reach steady-state may take several cycles. The last case shows promising results for the global motion. As expected, the breakup of the liquid surface makes it difficult to resolve each phase. But overall, the numerical model predicts the sloshing motion reasonably well.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleComputational Fluid Dynamics Simulations of Nonlinear Sloshing in a Rotating Rectangular Tank Using the Level Set Method
    typeJournal Paper
    journal volume140
    journal issue6
    journal titleJournal of Offshore Mechanics and Arctic Engineering
    identifier doi10.1115/1.4040560
    journal fristpage61806
    journal lastpage061806-7
    treeJournal of Offshore Mechanics and Arctic Engineering:;2018:;volume( 140 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian