YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Nuclear Engineering and Radiation Science
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Nuclear Engineering and Radiation Science
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Irradiation Issues and Material Selection for Canadian SCWR Components

    Source: Journal of Nuclear Engineering and Radiation Science:;2018:;volume( 004 ):;issue: 003::page 31005
    Author:
    Walters, L.
    ,
    Wright, M.
    ,
    Guzonas, D.
    DOI: 10.1115/1.4038367
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The Canadian super critical water-cooled reactor (SCWR) concept requires materials to operate at higher temperatures than current generation III water-cooled reactors. Materials performance after radiation damage is an important design consideration. Materials that are both corrosion resistant and radiation damage tolerant are required. This paper summarizes the operating conditions including temperature, neutron flux, and residence time of in-core Canadian SCWR components. The focus is on the effects of irradiation on in-core components, including those exposed to a high neutron flux in the fuel assembly, the high pressure boundary between coolant and moderator, as well as the low-temperature, low-flux calandria vessel that contains the moderator. Although the extreme conditions and the broad range of SCWR in-core operating conditions present significant materials selection challenges, candidate alloys that can meet the performance requirements under most in-core conditions have been identified. However, for all candidate materials, insufficient data are available to unequivocally ensure acceptable performance and experimental irradiations of candidate core materials will be required. Research programs are to include out-of-pile tests on un-irradiated and irradiated alloys. Ideally, in-flux studies at appropriate temperatures, neutron spectrum, dose rate, duration, and coolant chemistry will be required. Characterization of the microstructure and the mechanical behavior including strength, ductility, swelling, fracture toughness, cracking, and creep on each of the in-core candidate materials will ensure their viability in the Canadian SCWR.
    • Download: (1.573Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Irradiation Issues and Material Selection for Canadian SCWR Components

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4252624
    Collections
    • Journal of Nuclear Engineering and Radiation Science

    Show full item record

    contributor authorWalters, L.
    contributor authorWright, M.
    contributor authorGuzonas, D.
    date accessioned2019-02-28T11:05:46Z
    date available2019-02-28T11:05:46Z
    date copyright5/16/2018 12:00:00 AM
    date issued2018
    identifier issn2332-8983
    identifier otherners_004_03_031005.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4252624
    description abstractThe Canadian super critical water-cooled reactor (SCWR) concept requires materials to operate at higher temperatures than current generation III water-cooled reactors. Materials performance after radiation damage is an important design consideration. Materials that are both corrosion resistant and radiation damage tolerant are required. This paper summarizes the operating conditions including temperature, neutron flux, and residence time of in-core Canadian SCWR components. The focus is on the effects of irradiation on in-core components, including those exposed to a high neutron flux in the fuel assembly, the high pressure boundary between coolant and moderator, as well as the low-temperature, low-flux calandria vessel that contains the moderator. Although the extreme conditions and the broad range of SCWR in-core operating conditions present significant materials selection challenges, candidate alloys that can meet the performance requirements under most in-core conditions have been identified. However, for all candidate materials, insufficient data are available to unequivocally ensure acceptable performance and experimental irradiations of candidate core materials will be required. Research programs are to include out-of-pile tests on un-irradiated and irradiated alloys. Ideally, in-flux studies at appropriate temperatures, neutron spectrum, dose rate, duration, and coolant chemistry will be required. Characterization of the microstructure and the mechanical behavior including strength, ductility, swelling, fracture toughness, cracking, and creep on each of the in-core candidate materials will ensure their viability in the Canadian SCWR.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleIrradiation Issues and Material Selection for Canadian SCWR Components
    typeJournal Paper
    journal volume4
    journal issue3
    journal titleJournal of Nuclear Engineering and Radiation Science
    identifier doi10.1115/1.4038367
    journal fristpage31005
    journal lastpage031005-10
    treeJournal of Nuclear Engineering and Radiation Science:;2018:;volume( 004 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian