YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Nuclear Engineering and Radiation Science
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Nuclear Engineering and Radiation Science
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Research on the Application of Fen for Environmentally Assisted Fatigue Evaluation of the Austenitic SS Pipe Under Combined Transient Loads

    Source: Journal of Nuclear Engineering and Radiation Science:;2018:;volume( 004 ):;issue: 004::page 41009
    Author:
    Liang, Bingbing
    ,
    Zhang, Xu
    ,
    Yin, Haifeng
    ,
    Dai, Yang
    DOI: 10.1115/1.4040368
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Accumulative test data indicate that the effects of the light water reactor (LWR) environment could cause the fatigue resistance of primary pressure boundary components materials to be significantly reduced. Environmentally assisted fatigue (EAF) is the abbreviation of the environmentally assisted fatigue. In 2007, Nuclear Regulatory Commission (NRC) issued RG. 1.207. It was updated in 2014. And, it requires that the effects of LWR environment on the fatigue life reduction of metal components should be considered for new design plants. And it suggests to use environmental correction factor, Fen, to account for EAF. NRC regulation (NUREG), NUREG/CR-6909 (NRC, 2013, “Effect of LWR Coolant Environments on the Fatigue Life of Reactor Materials,” U.S. Nuclear Regulatory Commission, Argonne, IL, Standard no. NUREG/CR-6909), presents the detail Fen calculation formula. Fen is a function of temperature, strain rate, dissolved oxygen level in water, and sulfur content of the steel. Accordingly, Fen calculation will present a comparatively conservative result. Depending on the experience of the primary pressure boundary piping transient operation, Fen varies during each transient. More uncertainty and confusion are raised during the application of the Fen method. The research work in this paper includes: first, the typical character of piping thermal transient is derived based on the existing experience. Second, small specimen EAF tests are conducted depending on the above derived combined loading characters. Then effort is taken to improve the application of the Fen method for the combined multitransient loading conditions. And the results are compared with those of the lowest instantaneous Fen method and equalization of the weighted Fen method. Finally, a designed test plan is presented.
    • Download: (1.581Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Research on the Application of Fen for Environmentally Assisted Fatigue Evaluation of the Austenitic SS Pipe Under Combined Transient Loads

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4252586
    Collections
    • Journal of Nuclear Engineering and Radiation Science

    Show full item record

    contributor authorLiang, Bingbing
    contributor authorZhang, Xu
    contributor authorYin, Haifeng
    contributor authorDai, Yang
    date accessioned2019-02-28T11:05:32Z
    date available2019-02-28T11:05:32Z
    date copyright9/10/2018 12:00:00 AM
    date issued2018
    identifier issn2332-8983
    identifier otherners_004_04_041009.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4252586
    description abstractAccumulative test data indicate that the effects of the light water reactor (LWR) environment could cause the fatigue resistance of primary pressure boundary components materials to be significantly reduced. Environmentally assisted fatigue (EAF) is the abbreviation of the environmentally assisted fatigue. In 2007, Nuclear Regulatory Commission (NRC) issued RG. 1.207. It was updated in 2014. And, it requires that the effects of LWR environment on the fatigue life reduction of metal components should be considered for new design plants. And it suggests to use environmental correction factor, Fen, to account for EAF. NRC regulation (NUREG), NUREG/CR-6909 (NRC, 2013, “Effect of LWR Coolant Environments on the Fatigue Life of Reactor Materials,” U.S. Nuclear Regulatory Commission, Argonne, IL, Standard no. NUREG/CR-6909), presents the detail Fen calculation formula. Fen is a function of temperature, strain rate, dissolved oxygen level in water, and sulfur content of the steel. Accordingly, Fen calculation will present a comparatively conservative result. Depending on the experience of the primary pressure boundary piping transient operation, Fen varies during each transient. More uncertainty and confusion are raised during the application of the Fen method. The research work in this paper includes: first, the typical character of piping thermal transient is derived based on the existing experience. Second, small specimen EAF tests are conducted depending on the above derived combined loading characters. Then effort is taken to improve the application of the Fen method for the combined multitransient loading conditions. And the results are compared with those of the lowest instantaneous Fen method and equalization of the weighted Fen method. Finally, a designed test plan is presented.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleResearch on the Application of Fen for Environmentally Assisted Fatigue Evaluation of the Austenitic SS Pipe Under Combined Transient Loads
    typeJournal Paper
    journal volume4
    journal issue4
    journal titleJournal of Nuclear Engineering and Radiation Science
    identifier doi10.1115/1.4040368
    journal fristpage41009
    journal lastpage041009-6
    treeJournal of Nuclear Engineering and Radiation Science:;2018:;volume( 004 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian