YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Nuclear Engineering and Radiation Science
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Nuclear Engineering and Radiation Science
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Numerical Investigation of Convective Heat Transfer to Supercritical Pressure Hydrogen in a Straight Tube

    Source: Journal of Nuclear Engineering and Radiation Science:;2018:;volume( 004 ):;issue: 003::page 31012
    Author:
    Ji, Yu
    ,
    Sun, Jun
    ,
    Shi, Lei
    DOI: 10.1115/1.4039600
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Hydrogen is adopted as coolant for regenerative cooling nozzle and reactor core in nuclear thermal propulsion (NTP), which is a promising technology for human space exploration in the near future due to its large thrust and high specific impulse. During the cooling process, the hydrogen alters its state from subcritical to supercritical, accompanying with great variations of fluid properties and heat transfer characteristics. This paper is intended to study heat transfer processes of supercritical pressure hydrogen under extremely high heat flux by using numerical approach. To begin with, the models explaining the variation of density, specific heat capacity, viscosity, and thermal conductivity are introduced. Later on, the convective heat transfer to supercritical pressure hydrogen in a straight tube is investigated numerically by employing a computational model, which is simplified from experiments performed by Hendricks et al. During the simulation, the standard k–ε model combining the enhanced wall treatment is used to formulate the turbulent viscosity, and the results validates the approach through successful prediction of wall temperature profile and bulk temperature variation. Besides, the heat transfer deterioration which may occur in the heat transport of supercritical fluids is also observed. According to the results, it is deduced that the flow acceleration to a flat velocity profile in the near wall region due to properties variation of hydrogen contributes to the suppression of turbulence and the heat transfer deterioration, while the “M-shaped” velocity profile is more often correlated to the starting of a recovery phase of turbulence production and heat transfer.
    • Download: (957.3Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Numerical Investigation of Convective Heat Transfer to Supercritical Pressure Hydrogen in a Straight Tube

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4252573
    Collections
    • Journal of Nuclear Engineering and Radiation Science

    Show full item record

    contributor authorJi, Yu
    contributor authorSun, Jun
    contributor authorShi, Lei
    date accessioned2019-02-28T11:05:28Z
    date available2019-02-28T11:05:28Z
    date copyright5/16/2018 12:00:00 AM
    date issued2018
    identifier issn2332-8983
    identifier otherners_004_03_031012.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4252573
    description abstractHydrogen is adopted as coolant for regenerative cooling nozzle and reactor core in nuclear thermal propulsion (NTP), which is a promising technology for human space exploration in the near future due to its large thrust and high specific impulse. During the cooling process, the hydrogen alters its state from subcritical to supercritical, accompanying with great variations of fluid properties and heat transfer characteristics. This paper is intended to study heat transfer processes of supercritical pressure hydrogen under extremely high heat flux by using numerical approach. To begin with, the models explaining the variation of density, specific heat capacity, viscosity, and thermal conductivity are introduced. Later on, the convective heat transfer to supercritical pressure hydrogen in a straight tube is investigated numerically by employing a computational model, which is simplified from experiments performed by Hendricks et al. During the simulation, the standard k–ε model combining the enhanced wall treatment is used to formulate the turbulent viscosity, and the results validates the approach through successful prediction of wall temperature profile and bulk temperature variation. Besides, the heat transfer deterioration which may occur in the heat transport of supercritical fluids is also observed. According to the results, it is deduced that the flow acceleration to a flat velocity profile in the near wall region due to properties variation of hydrogen contributes to the suppression of turbulence and the heat transfer deterioration, while the “M-shaped” velocity profile is more often correlated to the starting of a recovery phase of turbulence production and heat transfer.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleNumerical Investigation of Convective Heat Transfer to Supercritical Pressure Hydrogen in a Straight Tube
    typeJournal Paper
    journal volume4
    journal issue3
    journal titleJournal of Nuclear Engineering and Radiation Science
    identifier doi10.1115/1.4039600
    journal fristpage31012
    journal lastpage031012-6
    treeJournal of Nuclear Engineering and Radiation Science:;2018:;volume( 004 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian