YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Nuclear Engineering and Radiation Science
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Nuclear Engineering and Radiation Science
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Transmutation Study of Minor Actinides in Mixed Oxide Fueled Typical Pressurized Water Reactor Assembly

    Source: Journal of Nuclear Engineering and Radiation Science:;2018:;volume( 004 ):;issue: 004::page 41017
    Author:
    Chen, Shengli
    ,
    Yuan, Cenxi
    DOI: 10.1115/1.4040423
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The management of long-lived radionuclides in spent fuel is a key issue to achieve the closed nuclear fuel cycle and the sustainable development of nuclear energy. The partitioning-transmutation method is supposed to efficiently treat the long-lived radionuclides. Accordingly, the transmutation of long-lived minor actinides (MAs) is significant for the postprocessing of spent fuel. In the present work, the transmutations in pressurized water reactor (PWR) mixed oxide (MOX) fuel are investigated through the Monte Carlo neutron transport method. Two types of MAs are homogeneously incorporated into MOX fuel assembly with different mixing ratios. In addition, two types of design of semihomogeneous loading of 237Np in MOX fuels are studied. The results indicate an overall nice efficiency of transmutation in PWR with MOX fuel, especially for 237Np and 241Am, which are primarily generated in the current uranium oxide fuel. In addition, the transmutation efficiency of 237Np is excellent, while its inclusion has no much influence on other MAs. The flattening of power and burnup are achieved by semihomogeneous loading of MAs. The uncertainties of Monte Carlo method are negligible, while those due to nuclear data change little the conclusions of the transmutation of MAs. The transmutation of MAs in MOX fuel is expected to be an efficient method for spent fuel management.
    • Download: (2.763Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Transmutation Study of Minor Actinides in Mixed Oxide Fueled Typical Pressurized Water Reactor Assembly

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4252548
    Collections
    • Journal of Nuclear Engineering and Radiation Science

    Show full item record

    contributor authorChen, Shengli
    contributor authorYuan, Cenxi
    date accessioned2019-02-28T11:05:21Z
    date available2019-02-28T11:05:21Z
    date copyright9/10/2018 12:00:00 AM
    date issued2018
    identifier issn2332-8983
    identifier otherners_004_04_041017.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4252548
    description abstractThe management of long-lived radionuclides in spent fuel is a key issue to achieve the closed nuclear fuel cycle and the sustainable development of nuclear energy. The partitioning-transmutation method is supposed to efficiently treat the long-lived radionuclides. Accordingly, the transmutation of long-lived minor actinides (MAs) is significant for the postprocessing of spent fuel. In the present work, the transmutations in pressurized water reactor (PWR) mixed oxide (MOX) fuel are investigated through the Monte Carlo neutron transport method. Two types of MAs are homogeneously incorporated into MOX fuel assembly with different mixing ratios. In addition, two types of design of semihomogeneous loading of 237Np in MOX fuels are studied. The results indicate an overall nice efficiency of transmutation in PWR with MOX fuel, especially for 237Np and 241Am, which are primarily generated in the current uranium oxide fuel. In addition, the transmutation efficiency of 237Np is excellent, while its inclusion has no much influence on other MAs. The flattening of power and burnup are achieved by semihomogeneous loading of MAs. The uncertainties of Monte Carlo method are negligible, while those due to nuclear data change little the conclusions of the transmutation of MAs. The transmutation of MAs in MOX fuel is expected to be an efficient method for spent fuel management.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleTransmutation Study of Minor Actinides in Mixed Oxide Fueled Typical Pressurized Water Reactor Assembly
    typeJournal Paper
    journal volume4
    journal issue4
    journal titleJournal of Nuclear Engineering and Radiation Science
    identifier doi10.1115/1.4040423
    journal fristpage41017
    journal lastpage041017-9
    treeJournal of Nuclear Engineering and Radiation Science:;2018:;volume( 004 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian