YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Medical Devices
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Medical Devices
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Pulsatile Perfusion Bioreactor for Biomimetic Vascular Impedances

    Source: Journal of Medical Devices:;2018:;volume( 012 ):;issue: 004::page 41002
    Author:
    Prim, David A.
    ,
    Potts, Jay D.
    ,
    Eberth, John F.
    DOI: 10.1115/1.4040648
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Pulsatile waves of blood pressure and flow are continuously augmented by the resistance, compliance, and inertance properties of the vasculature, resulting in unique wave characteristics at distinct anatomical locations. Hemodynamically generated loads, transduced as physical signals into resident vascular cells, are crucial to the maintenance and preservation of a healthy vascular physiology; thus, failure to recreate biomimetic loading in vitro can lead to pathological gene expression and aberrant remodeling. As a generalized approach to improve native and engineered blood vessels, we have designed, built, and tested a pulsatile perfusion bioreactor based on biomimetic impedances and a novel five-element electrohydraulic analog. Here, the elements of an incubator-based culture system were formulaically designed to match the vascular impedance of a brachial artery by incorporating both the inherent (systemic) and added elements of the physical system into the theoretical approach. Freshly harvested porcine saphenous veins were perfused within a physiological culture chamber for 6 h and the relative expression of seven known mechanically sensitive remodeling genes analyzed using the quantitative polymerase chain reaction (qPCR) method. Of these, we found plasminogen activator inhibitor-1 (SERPINE1) and fibronectin-1 (FN1) to be highly sensitive to differences between arterial- and venous-like culture conditions. The analytical approach and biological confirmation provide a framework toward the general design of long-term hemodynamic-mimetic vascular culture systems.
    • Download: (2.281Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Pulsatile Perfusion Bioreactor for Biomimetic Vascular Impedances

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4252470
    Collections
    • Journal of Medical Devices

    Show full item record

    contributor authorPrim, David A.
    contributor authorPotts, Jay D.
    contributor authorEberth, John F.
    date accessioned2019-02-28T11:04:54Z
    date available2019-02-28T11:04:54Z
    date copyright9/21/2018 12:00:00 AM
    date issued2018
    identifier issn1932-6181
    identifier othermed_012_04_041002.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4252470
    description abstractPulsatile waves of blood pressure and flow are continuously augmented by the resistance, compliance, and inertance properties of the vasculature, resulting in unique wave characteristics at distinct anatomical locations. Hemodynamically generated loads, transduced as physical signals into resident vascular cells, are crucial to the maintenance and preservation of a healthy vascular physiology; thus, failure to recreate biomimetic loading in vitro can lead to pathological gene expression and aberrant remodeling. As a generalized approach to improve native and engineered blood vessels, we have designed, built, and tested a pulsatile perfusion bioreactor based on biomimetic impedances and a novel five-element electrohydraulic analog. Here, the elements of an incubator-based culture system were formulaically designed to match the vascular impedance of a brachial artery by incorporating both the inherent (systemic) and added elements of the physical system into the theoretical approach. Freshly harvested porcine saphenous veins were perfused within a physiological culture chamber for 6 h and the relative expression of seven known mechanically sensitive remodeling genes analyzed using the quantitative polymerase chain reaction (qPCR) method. Of these, we found plasminogen activator inhibitor-1 (SERPINE1) and fibronectin-1 (FN1) to be highly sensitive to differences between arterial- and venous-like culture conditions. The analytical approach and biological confirmation provide a framework toward the general design of long-term hemodynamic-mimetic vascular culture systems.
    publisherThe American Society of Mechanical Engineers (ASME)
    titlePulsatile Perfusion Bioreactor for Biomimetic Vascular Impedances
    typeJournal Paper
    journal volume12
    journal issue4
    journal titleJournal of Medical Devices
    identifier doi10.1115/1.4040648
    journal fristpage41002
    journal lastpage041002-10
    treeJournal of Medical Devices:;2018:;volume( 012 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian