YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Mechanisms and Robotics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Mechanisms and Robotics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Modular Manipulators for Cluttered Environments: A Task-Based Configuration Design Approach

    Source: Journal of Mechanisms and Robotics:;2018:;volume( 010 ):;issue: 005::page 51010
    Author:
    Singh, Satwinder
    ,
    Singla, Ashish
    ,
    Singla, Ekta
    DOI: 10.1115/1.4040633
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Modular manipulators gained popularity for their implicit feature of “reconfigurability”—that is, the ability to serve multiple applications by adopting different configurations. As reported in the literature, most of the robotic arms with modular architecture used specific values of twist angles, e.g., 0 deg or 90 deg. Further, the number of degrees-of-freedom (DoF) is also kept fixed. These constraints on the design parameters lead to a smaller solution space for the configuration synthesis problems and may result as no-feasible solution in a cluttered work-cell. To work in a realistic environment, the task-based customized design of a manipulator may need a larger solution space. This work deals with the extension of the modular architecture from conventional values to unconventional values of design parameters, keeping the degrees-of-freedom also as variable. This results into an effective utilization of modular designs for highly cluttered environments. A three-phase design strategy is proposed in the current work. The design strategy starts with the decision of optimal number of modules required for the given environment in the first phase, which is followed by task-based “configuration planning” and “optimal assembly” in the second and third phase, respectively. Three types of modules are proposed with same architecture and different sizes—heavy (H), medium (M), and light (L). The configuration planning includes detailed discussion on the type-selection of the modules and their possible combinations. Comparison of all possible n-link combinations is analyzed based upon the optimized results with respect to the minimum torque values. Case studies of a power plant with two different workspaces are included to illustrate the three-phase strategy representing the importance of modularity in nonrepetitive maintenance tasks.
    • Download: (2.651Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Modular Manipulators for Cluttered Environments: A Task-Based Configuration Design Approach

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4252402
    Collections
    • Journal of Mechanisms and Robotics

    Show full item record

    contributor authorSingh, Satwinder
    contributor authorSingla, Ashish
    contributor authorSingla, Ekta
    date accessioned2019-02-28T11:04:32Z
    date available2019-02-28T11:04:32Z
    date copyright7/18/2018 12:00:00 AM
    date issued2018
    identifier issn1942-4302
    identifier otherjmr_010_05_051010.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4252402
    description abstractModular manipulators gained popularity for their implicit feature of “reconfigurability”—that is, the ability to serve multiple applications by adopting different configurations. As reported in the literature, most of the robotic arms with modular architecture used specific values of twist angles, e.g., 0 deg or 90 deg. Further, the number of degrees-of-freedom (DoF) is also kept fixed. These constraints on the design parameters lead to a smaller solution space for the configuration synthesis problems and may result as no-feasible solution in a cluttered work-cell. To work in a realistic environment, the task-based customized design of a manipulator may need a larger solution space. This work deals with the extension of the modular architecture from conventional values to unconventional values of design parameters, keeping the degrees-of-freedom also as variable. This results into an effective utilization of modular designs for highly cluttered environments. A three-phase design strategy is proposed in the current work. The design strategy starts with the decision of optimal number of modules required for the given environment in the first phase, which is followed by task-based “configuration planning” and “optimal assembly” in the second and third phase, respectively. Three types of modules are proposed with same architecture and different sizes—heavy (H), medium (M), and light (L). The configuration planning includes detailed discussion on the type-selection of the modules and their possible combinations. Comparison of all possible n-link combinations is analyzed based upon the optimized results with respect to the minimum torque values. Case studies of a power plant with two different workspaces are included to illustrate the three-phase strategy representing the importance of modularity in nonrepetitive maintenance tasks.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleModular Manipulators for Cluttered Environments: A Task-Based Configuration Design Approach
    typeJournal Paper
    journal volume10
    journal issue5
    journal titleJournal of Mechanisms and Robotics
    identifier doi10.1115/1.4040633
    journal fristpage51010
    journal lastpage051010-11
    treeJournal of Mechanisms and Robotics:;2018:;volume( 010 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian