Optimal Paths for Polygonal Robots in SE(2)Source: Journal of Mechanisms and Robotics:;2018:;volume( 010 ):;issue: 002::page 21005Author:Kennedy, III, Monroe
,
Thakur, Dinesh
,
Ani Hsieh, M.
,
Bhattacharya, Subhrajit
,
Kumar, Vijay
DOI: 10.1115/1.4038980Publisher: The American Society of Mechanical Engineers (ASME)
Abstract: We consider planar navigation for a polygonal, holonomic robot in an obstacle-filled environment in SE(2). To determine the free space, we first represent obstacles as point clouds in the robot configuration space (C). A point-wise Minkowski sum of the robot and obstacle points is then calculated in C using obstacle points and robot convex hull points for varying robot configurations. Using graph search, we obtain a seed path, which is used in our novel method to compute overlapping convex regions for consecutive seed path chords. The resulting regions provide collision-free space useful for finding feasible trajectories that optimize a specified cost functional. The key contribution is the proposed method's ability to easily generate a set of convex, overlapping polytopes that effectively represent the traversable free space. This, in turn, lends itself to (a) efficient computation of optimal paths in ℝ3 and (b) extending these basic ideas to the special Euclidean space SE(2). We provide simulated examples and implement this algorithm on a KUKA youBot omnidirectional base.
|
Collections
Show full item record
contributor author | Kennedy, III, Monroe | |
contributor author | Thakur, Dinesh | |
contributor author | Ani Hsieh, M. | |
contributor author | Bhattacharya, Subhrajit | |
contributor author | Kumar, Vijay | |
date accessioned | 2019-02-28T11:04:17Z | |
date available | 2019-02-28T11:04:17Z | |
date copyright | 2/1/2018 12:00:00 AM | |
date issued | 2018 | |
identifier issn | 1942-4302 | |
identifier other | jmr_010_02_021005.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl1/handle/yetl/4252350 | |
description abstract | We consider planar navigation for a polygonal, holonomic robot in an obstacle-filled environment in SE(2). To determine the free space, we first represent obstacles as point clouds in the robot configuration space (C). A point-wise Minkowski sum of the robot and obstacle points is then calculated in C using obstacle points and robot convex hull points for varying robot configurations. Using graph search, we obtain a seed path, which is used in our novel method to compute overlapping convex regions for consecutive seed path chords. The resulting regions provide collision-free space useful for finding feasible trajectories that optimize a specified cost functional. The key contribution is the proposed method's ability to easily generate a set of convex, overlapping polytopes that effectively represent the traversable free space. This, in turn, lends itself to (a) efficient computation of optimal paths in ℝ3 and (b) extending these basic ideas to the special Euclidean space SE(2). We provide simulated examples and implement this algorithm on a KUKA youBot omnidirectional base. | |
publisher | The American Society of Mechanical Engineers (ASME) | |
title | Optimal Paths for Polygonal Robots in SE(2) | |
type | Journal Paper | |
journal volume | 10 | |
journal issue | 2 | |
journal title | Journal of Mechanisms and Robotics | |
identifier doi | 10.1115/1.4038980 | |
journal fristpage | 21005 | |
journal lastpage | 021005-8 | |
tree | Journal of Mechanisms and Robotics:;2018:;volume( 010 ):;issue: 002 | |
contenttype | Fulltext |