YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Mechanisms and Robotics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Mechanisms and Robotics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Minimum Base Attitude Disturbance Planning for a Space Robot During Target Capture

    Source: Journal of Mechanisms and Robotics:;2018:;volume( 010 ):;issue: 005::page 51002
    Author:
    Hu, Jingchen
    ,
    Wang, Tianshu
    DOI: 10.1115/1.4040435
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This paper presents a method to minimize the base attitude disturbance of a space robot during target capture. First, a general dynamic model of a free-floating space robot capturing a target is established using spatial operator Algebra, and a simple analytical formula for the base angular velocity change during the impact phase is obtained. Compared with the former models proposed in the literature, this model has a simpler form, a wider range of applications, and O(n) computation complexity. Second, based on the orthogonal projection matrix lemma, we propose the generalized mass Jacobian matrix (GMJM) and find that the base angular velocity change is a constant multiple of the component which the impact impulse projects to the column space of the GMJM. Third, a new concept, the base attitude disturbance ellipsoid (BADE), is proposed to express the relationship between the base attitude disturbance and the impact direction. The impact direction satisfying the minimum base attitude disturbance can be straightforwardly obtained from the BADE. In particular, for a planar space robot, we draw the useful conclusion that the impact direction unchanged base attitude must exist. Furthermore, the average axial length of the BADE is used as a measurement to illustrate the average base attitude disturbance under impact impulses from different directions. With this measurement, the desired pre-impact configuration with minimum average base attitude disturbance can be easily determined. The validity and the efficiency of this method are verified using a three-link planar space robot and a 7DOF space robot.
    • Download: (2.742Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Minimum Base Attitude Disturbance Planning for a Space Robot During Target Capture

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4252346
    Collections
    • Journal of Mechanisms and Robotics

    Show full item record

    contributor authorHu, Jingchen
    contributor authorWang, Tianshu
    date accessioned2019-02-28T11:04:15Z
    date available2019-02-28T11:04:15Z
    date copyright6/27/2018 12:00:00 AM
    date issued2018
    identifier issn1942-4302
    identifier otherjmr_010_05_051002.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4252346
    description abstractThis paper presents a method to minimize the base attitude disturbance of a space robot during target capture. First, a general dynamic model of a free-floating space robot capturing a target is established using spatial operator Algebra, and a simple analytical formula for the base angular velocity change during the impact phase is obtained. Compared with the former models proposed in the literature, this model has a simpler form, a wider range of applications, and O(n) computation complexity. Second, based on the orthogonal projection matrix lemma, we propose the generalized mass Jacobian matrix (GMJM) and find that the base angular velocity change is a constant multiple of the component which the impact impulse projects to the column space of the GMJM. Third, a new concept, the base attitude disturbance ellipsoid (BADE), is proposed to express the relationship between the base attitude disturbance and the impact direction. The impact direction satisfying the minimum base attitude disturbance can be straightforwardly obtained from the BADE. In particular, for a planar space robot, we draw the useful conclusion that the impact direction unchanged base attitude must exist. Furthermore, the average axial length of the BADE is used as a measurement to illustrate the average base attitude disturbance under impact impulses from different directions. With this measurement, the desired pre-impact configuration with minimum average base attitude disturbance can be easily determined. The validity and the efficiency of this method are verified using a three-link planar space robot and a 7DOF space robot.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleMinimum Base Attitude Disturbance Planning for a Space Robot During Target Capture
    typeJournal Paper
    journal volume10
    journal issue5
    journal titleJournal of Mechanisms and Robotics
    identifier doi10.1115/1.4040435
    journal fristpage51002
    journal lastpage051002-13
    treeJournal of Mechanisms and Robotics:;2018:;volume( 010 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian