YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Mechanical Design
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Mechanical Design
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Quantifying the Shape of Pareto Fronts During Multi-Objective Trade Space Exploration

    Source: Journal of Mechanical Design:;2018:;volume( 140 ):;issue: 002::page 21402
    Author:
    Unal, Mehmet
    ,
    Warn, Gordon P.
    ,
    Simpson, Timothy W.
    DOI: 10.1115/1.4038005
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Recent advances in simulation and computation capabilities have enabled designers to model increasingly complex engineering problems, taking into account many dimensions, or objectives, in the problem formulation. Increasing the dimensionality often results in a large trade space, where decision-makers (DM) must identify and negotiate conflicting objectives to select the best designs. Trade space exploration often involves the projection of nondominated solutions, that is, the Pareto front, onto two-objective trade spaces to help identify and negotiate tradeoffs between conflicting objectives. However, as the number of objectives increases, an exhaustive exploration of all of the two-dimensional (2D) Pareto fronts can be inefficient due to a combinatorial increase in objective pairs. Recently, an index was introduced to quantify the shape of a Pareto front without having to visualize the solution set. In this paper, a formal derivation of the Pareto Shape Index is presented and used to support multi-objective trade space exploration. Two approaches for trade space exploration are presented and their advantages are discussed, specifically: (1) using the Pareto shape index for weighting objectives and (2) using the Pareto shape index to rank objective pairs for visualization. By applying the two approaches to two multi-objective problems, the efficiency of using the Pareto shape index for weighting objectives to identify solutions is demonstrated. We also show that using the index to rank objective pairs provides DM with the flexibility to form preferences throughout the process without closely investigating all objective pairs. The limitations and future work are also discussed.
    • Download: (4.150Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Quantifying the Shape of Pareto Fronts During Multi-Objective Trade Space Exploration

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4252275
    Collections
    • Journal of Mechanical Design

    Show full item record

    contributor authorUnal, Mehmet
    contributor authorWarn, Gordon P.
    contributor authorSimpson, Timothy W.
    date accessioned2019-02-28T11:03:54Z
    date available2019-02-28T11:03:54Z
    date copyright12/13/2017 12:00:00 AM
    date issued2018
    identifier issn1050-0472
    identifier othermd_140_02_021402.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4252275
    description abstractRecent advances in simulation and computation capabilities have enabled designers to model increasingly complex engineering problems, taking into account many dimensions, or objectives, in the problem formulation. Increasing the dimensionality often results in a large trade space, where decision-makers (DM) must identify and negotiate conflicting objectives to select the best designs. Trade space exploration often involves the projection of nondominated solutions, that is, the Pareto front, onto two-objective trade spaces to help identify and negotiate tradeoffs between conflicting objectives. However, as the number of objectives increases, an exhaustive exploration of all of the two-dimensional (2D) Pareto fronts can be inefficient due to a combinatorial increase in objective pairs. Recently, an index was introduced to quantify the shape of a Pareto front without having to visualize the solution set. In this paper, a formal derivation of the Pareto Shape Index is presented and used to support multi-objective trade space exploration. Two approaches for trade space exploration are presented and their advantages are discussed, specifically: (1) using the Pareto shape index for weighting objectives and (2) using the Pareto shape index to rank objective pairs for visualization. By applying the two approaches to two multi-objective problems, the efficiency of using the Pareto shape index for weighting objectives to identify solutions is demonstrated. We also show that using the index to rank objective pairs provides DM with the flexibility to form preferences throughout the process without closely investigating all objective pairs. The limitations and future work are also discussed.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleQuantifying the Shape of Pareto Fronts During Multi-Objective Trade Space Exploration
    typeJournal Paper
    journal volume140
    journal issue2
    journal titleJournal of Mechanical Design
    identifier doi10.1115/1.4038005
    journal fristpage21402
    journal lastpage021402-13
    treeJournal of Mechanical Design:;2018:;volume( 140 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian