YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Mechanical Design
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Mechanical Design
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Ranking Ideas for Diversity and Quality

    Source: Journal of Mechanical Design:;2018:;volume( 140 ):;issue: 001::page 11101
    Author:
    Ahmed, Faez
    ,
    Fuge, Mark
    DOI: 10.1115/1.4038070
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: When selecting ideas or trying to find inspiration, designers often must sift through hundreds or thousands of ideas. This paper provides an algorithm to rank design ideas such that the ranked list simultaneously maximizes the quality and diversity of recommended designs. To do so, we first define and compare two diversity measures using determinantal point processes (DPP) and additive submodular functions. We show that DPPs are more suitable for items expressed as text and that a greedy algorithm diversifies rankings with both theoretical guarantees and empirical performance on what is otherwise an NP-Hard problem. To produce such rankings, this paper contributes a novel way to extend quality and diversity metrics from sets to permutations of ranked lists. These rank metrics open up the use of multi-objective optimization to describe trade-offs between diversity and quality in ranked lists. We use such trade-off fronts to help designers select rankings using indifference curves. However, we also show that rankings on trade-off front share a number of top-ranked items; this means reviewing items (for a given depth like the top ten) from across the entire diversity-to-quality front incurs only a marginal increase in the number of designs considered. While the proposed techniques are general purpose enough to be used across domains, we demonstrate concrete performance on selecting items in an online design community (OpenIDEO), where our approach reduces the time required to review diverse, high-quality ideas from around 25 h to 90 min. This makes evaluation of crowd-generated ideas tractable for a single designer. Our code is publicly accessible for further research.
    • Download: (457.6Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Ranking Ideas for Diversity and Quality

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4252156
    Collections
    • Journal of Mechanical Design

    Show full item record

    contributor authorAhmed, Faez
    contributor authorFuge, Mark
    date accessioned2019-02-28T11:03:16Z
    date available2019-02-28T11:03:16Z
    date copyright11/9/2017 12:00:00 AM
    date issued2018
    identifier issn1050-0472
    identifier othermd_140_01_011101.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4252156
    description abstractWhen selecting ideas or trying to find inspiration, designers often must sift through hundreds or thousands of ideas. This paper provides an algorithm to rank design ideas such that the ranked list simultaneously maximizes the quality and diversity of recommended designs. To do so, we first define and compare two diversity measures using determinantal point processes (DPP) and additive submodular functions. We show that DPPs are more suitable for items expressed as text and that a greedy algorithm diversifies rankings with both theoretical guarantees and empirical performance on what is otherwise an NP-Hard problem. To produce such rankings, this paper contributes a novel way to extend quality and diversity metrics from sets to permutations of ranked lists. These rank metrics open up the use of multi-objective optimization to describe trade-offs between diversity and quality in ranked lists. We use such trade-off fronts to help designers select rankings using indifference curves. However, we also show that rankings on trade-off front share a number of top-ranked items; this means reviewing items (for a given depth like the top ten) from across the entire diversity-to-quality front incurs only a marginal increase in the number of designs considered. While the proposed techniques are general purpose enough to be used across domains, we demonstrate concrete performance on selecting items in an online design community (OpenIDEO), where our approach reduces the time required to review diverse, high-quality ideas from around 25 h to 90 min. This makes evaluation of crowd-generated ideas tractable for a single designer. Our code is publicly accessible for further research.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleRanking Ideas for Diversity and Quality
    typeJournal Paper
    journal volume140
    journal issue1
    journal titleJournal of Mechanical Design
    identifier doi10.1115/1.4038070
    journal fristpage11101
    journal lastpage011101-11
    treeJournal of Mechanical Design:;2018:;volume( 140 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian