Predictive Modeling of Droplet Formation Processes in Inkjet-Based BioprintingSource: Journal of Manufacturing Science and Engineering:;2018:;volume( 140 ):;issue: 010::page 101007DOI: 10.1115/1.4040619Publisher: The American Society of Mechanical Engineers (ASME)
Abstract: Additive manufacturing is driving major innovations in many areas such as biomedical engineering. Recent advances have enabled three-dimensional (3D) printing of biocompatible materials and cells into complex 3D functional living tissues and organs using bio-printable materials (i.e., bioink). Inkjet-based bioprinting fabricates the tissue and organ constructs by ejecting droplets onto a substrate. Compared with microextrusion-based and laser-assisted bioprinting, it is very difficult to predict and control the droplet formation process (e.g., droplet velocity and volume). To address this issue, this paper presents a new data-driven approach to predicting droplet velocity and volume in the inkjet-based bioprinting process. An imaging system was used to monitor the droplet formation process. To investigate the effects of polymer concentration, excitation voltage, dwell time, and rise time on droplet velocity and volume, a full factorial design of experiments (DOE) was conducted. Two predictive models were developed to predict droplet velocity and volume using ensemble learning. The accuracy of the two predictive models was measured using the root-mean-square error (RMSE), relative error (RE), and coefficient of determination (R2). Experimental results have shown that the predictive models are capable of predicting droplet velocity and volume with sufficient accuracy.
|
Collections
Show full item record
contributor author | Wu, Dazhong | |
contributor author | Xu, Changxue | |
date accessioned | 2019-02-28T11:03:03Z | |
date available | 2019-02-28T11:03:03Z | |
date copyright | 7/9/2018 12:00:00 AM | |
date issued | 2018 | |
identifier issn | 1087-1357 | |
identifier other | manu_140_10_101007.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl1/handle/yetl/4252114 | |
description abstract | Additive manufacturing is driving major innovations in many areas such as biomedical engineering. Recent advances have enabled three-dimensional (3D) printing of biocompatible materials and cells into complex 3D functional living tissues and organs using bio-printable materials (i.e., bioink). Inkjet-based bioprinting fabricates the tissue and organ constructs by ejecting droplets onto a substrate. Compared with microextrusion-based and laser-assisted bioprinting, it is very difficult to predict and control the droplet formation process (e.g., droplet velocity and volume). To address this issue, this paper presents a new data-driven approach to predicting droplet velocity and volume in the inkjet-based bioprinting process. An imaging system was used to monitor the droplet formation process. To investigate the effects of polymer concentration, excitation voltage, dwell time, and rise time on droplet velocity and volume, a full factorial design of experiments (DOE) was conducted. Two predictive models were developed to predict droplet velocity and volume using ensemble learning. The accuracy of the two predictive models was measured using the root-mean-square error (RMSE), relative error (RE), and coefficient of determination (R2). Experimental results have shown that the predictive models are capable of predicting droplet velocity and volume with sufficient accuracy. | |
publisher | The American Society of Mechanical Engineers (ASME) | |
title | Predictive Modeling of Droplet Formation Processes in Inkjet-Based Bioprinting | |
type | Journal Paper | |
journal volume | 140 | |
journal issue | 10 | |
journal title | Journal of Manufacturing Science and Engineering | |
identifier doi | 10.1115/1.4040619 | |
journal fristpage | 101007 | |
journal lastpage | 101007-9 | |
tree | Journal of Manufacturing Science and Engineering:;2018:;volume( 140 ):;issue: 010 | |
contenttype | Fulltext |