YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Hierarchical Metamodeling of the Air Bending Process

    Source: Journal of Manufacturing Science and Engineering:;2018:;volume( 140 ):;issue: 007::page 71018
    Author:
    Strano, Matteo
    ,
    Semeraro, Quirico
    ,
    Iorio, Lorenzo
    ,
    Sofia, Roberto
    DOI: 10.1115/1.4040025
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Despite the tremendous effort of researchers and manufacturing engineers in improving the predictability of the air bending process, there is still a strong need for comprehensive and dependable prediction models. Currently, available modeling approaches all present some relevant limitations in practical applications. In this paper, we propose a new method, which represents an improvement over all existing modeling and prediction techniques. The proposed method can be used for accurate prediction of the main response variables of the air bending process: the angle α after springback and the bend deduction BD. The metamodeling method is based on the hierarchical fusion of different kinds of data: the deterministic low-fidelity response of numerical finite element method (FEM) simulations and the stochastic high fidelity response of experimental tests. The metamodel has been built over a very large database, unprecedented in the scientific literature on air bending, made of more than 500 numerical simulations and nearly 300 experimental tests. The fusion is achieved first by interpolating the FEM simulations with a kriging predictor; then, the hierarchical metamodel is built as a linear regression model of the experimental data, using the kriging predictor among the regressors. The accuracy of the method has been proved using a variant of the leave-one-out cross validation technique. The quality of the prediction yielded by the proposed method significantly over-performs the current prediction of the press brake on-line numerical control.
    • Download: (1.501Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Hierarchical Metamodeling of the Air Bending Process

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4252090
    Collections
    • Journal of Manufacturing Science and Engineering

    Show full item record

    contributor authorStrano, Matteo
    contributor authorSemeraro, Quirico
    contributor authorIorio, Lorenzo
    contributor authorSofia, Roberto
    date accessioned2019-02-28T11:02:56Z
    date available2019-02-28T11:02:56Z
    date copyright5/21/2018 12:00:00 AM
    date issued2018
    identifier issn1087-1357
    identifier othermanu_140_07_071018.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4252090
    description abstractDespite the tremendous effort of researchers and manufacturing engineers in improving the predictability of the air bending process, there is still a strong need for comprehensive and dependable prediction models. Currently, available modeling approaches all present some relevant limitations in practical applications. In this paper, we propose a new method, which represents an improvement over all existing modeling and prediction techniques. The proposed method can be used for accurate prediction of the main response variables of the air bending process: the angle α after springback and the bend deduction BD. The metamodeling method is based on the hierarchical fusion of different kinds of data: the deterministic low-fidelity response of numerical finite element method (FEM) simulations and the stochastic high fidelity response of experimental tests. The metamodel has been built over a very large database, unprecedented in the scientific literature on air bending, made of more than 500 numerical simulations and nearly 300 experimental tests. The fusion is achieved first by interpolating the FEM simulations with a kriging predictor; then, the hierarchical metamodel is built as a linear regression model of the experimental data, using the kriging predictor among the regressors. The accuracy of the method has been proved using a variant of the leave-one-out cross validation technique. The quality of the prediction yielded by the proposed method significantly over-performs the current prediction of the press brake on-line numerical control.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleHierarchical Metamodeling of the Air Bending Process
    typeJournal Paper
    journal volume140
    journal issue7
    journal titleJournal of Manufacturing Science and Engineering
    identifier doi10.1115/1.4040025
    journal fristpage71018
    journal lastpage071018-10
    treeJournal of Manufacturing Science and Engineering:;2018:;volume( 140 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian