YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    In-Plane Stiffness of Additively Manufactured Hierarchical Honeycomb Metamaterials With Defects

    Source: Journal of Manufacturing Science and Engineering:;2018:;volume( 140 ):;issue: 001::page 11007
    Author:
    Rahman, Kazi Moshiur
    ,
    Hu, Zhong
    ,
    Letcher, Todd
    DOI: 10.1115/1.4038205
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Cellular metamaterials are of interest for many current engineering applications. The incorporation of hierarchy to cellular metamaterials enhances the properties and introduces novel tailorable metamaterials. For many complex cellular metamaterials, the only realistic manufacturing process is additive manufacturing (AM). The use of AM to manufacture large structures may lead to several types of manufacturing defects, such as imperfect cell walls, irregular thickness, flawed joints, partially missing layers, and irregular elastic–plastic behavior due to toolpath. It is important to understand the effect of defects on the overall performance of the structures to determine if the manufacturing defect(s) are significant enough to abort and restart the manufacturing process or whether the material can still be used in its nonperfect state. In this study, the performance of hierarchical honeycomb metamaterials with defects has been investigated through simulations and experiments, and hierarchical honeycombs were shown to demonstrate more sensitivity to missing cell walls than regular honeycombs. On average, the axial elastic modulus decreased by 45% with 5.5% missing cell walls for regular honeycombs, 60% with 4% missing cell walls for first-order hierarchical honeycomb and 95% with 4% missing cell walls for second-order hierarchical honeycomb. The transverse elastic modulus decreased by about 45% with more than 5.5% missing cell walls for regular honeycomb, about 75% with 4% missing cell walls for first-order and more than 95% with 4% missing cell walls for second-order hierarchical honeycomb.
    • Download: (4.787Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      In-Plane Stiffness of Additively Manufactured Hierarchical Honeycomb Metamaterials With Defects

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4252063
    Collections
    • Journal of Manufacturing Science and Engineering

    Show full item record

    contributor authorRahman, Kazi Moshiur
    contributor authorHu, Zhong
    contributor authorLetcher, Todd
    date accessioned2019-02-28T11:02:46Z
    date available2019-02-28T11:02:46Z
    date copyright11/16/2017 12:00:00 AM
    date issued2018
    identifier issn1087-1357
    identifier othermanu_140_01_011007.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4252063
    description abstractCellular metamaterials are of interest for many current engineering applications. The incorporation of hierarchy to cellular metamaterials enhances the properties and introduces novel tailorable metamaterials. For many complex cellular metamaterials, the only realistic manufacturing process is additive manufacturing (AM). The use of AM to manufacture large structures may lead to several types of manufacturing defects, such as imperfect cell walls, irregular thickness, flawed joints, partially missing layers, and irregular elastic–plastic behavior due to toolpath. It is important to understand the effect of defects on the overall performance of the structures to determine if the manufacturing defect(s) are significant enough to abort and restart the manufacturing process or whether the material can still be used in its nonperfect state. In this study, the performance of hierarchical honeycomb metamaterials with defects has been investigated through simulations and experiments, and hierarchical honeycombs were shown to demonstrate more sensitivity to missing cell walls than regular honeycombs. On average, the axial elastic modulus decreased by 45% with 5.5% missing cell walls for regular honeycombs, 60% with 4% missing cell walls for first-order hierarchical honeycomb and 95% with 4% missing cell walls for second-order hierarchical honeycomb. The transverse elastic modulus decreased by about 45% with more than 5.5% missing cell walls for regular honeycomb, about 75% with 4% missing cell walls for first-order and more than 95% with 4% missing cell walls for second-order hierarchical honeycomb.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleIn-Plane Stiffness of Additively Manufactured Hierarchical Honeycomb Metamaterials With Defects
    typeJournal Paper
    journal volume140
    journal issue1
    journal titleJournal of Manufacturing Science and Engineering
    identifier doi10.1115/1.4038205
    journal fristpage11007
    journal lastpage011007-11
    treeJournal of Manufacturing Science and Engineering:;2018:;volume( 140 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian