YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    In-Process Monitoring of Material Cross-Contamination Defects in Laser Powder Bed Fusion

    Source: Journal of Manufacturing Science and Engineering:;2018:;volume( 140 ):;issue: 011::page 111001
    Author:
    Montazeri, Mohammad
    ,
    Yavari, Reza
    ,
    Rao, Prahalada
    ,
    Boulware, Paul
    DOI: 10.1115/1.4040543
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The goal of this work is to detect the onset of material cross-contamination in laser powder bed fusion (L-PBF) additive manufacturing (AM) process using data from in situ sensors. Material cross-contamination refers to trace foreign materials that may be introduced in the powder feedstock used in the process due to reasons such as poor cleaning of the machine after previous builds or inadequate quality control during production and storage of the powder. Material cross-contamination may lead to deleterious changes in the microstructure of the AM part and consequently affect its functional properties. Accordingly, the objective of this work is to develop and apply a spectral graph theoretic approach to detect the occurrence of material cross-contamination in real-time as the part is being built using in-process sensors. The central hypothesis is that transforming the process signals in the spectral graph domain leads to early and more accurate detection of material cross-contamination in L-PBF compared to the traditional delay-embedded Bon-Jenkins stochastic time series analysis techniques, such as autoregressive (AR) and autoregressive moving average (ARMA) modeling. To test this hypothesis, Inconel alloy 625 (UNS alloy 06625) test parts were made at Edison Welding Institute (EWI) on a custom-built L-PBF apparatus integrated with multiple sensors, including a silicon photodetector (with 300 nm to 1100 nm optical wavelength). During the process, two types of foreign contaminant materials, namely, tungsten and aluminum particulates, under varying degrees of severity were introduced. To detect cross-contamination in the part, the photodetector sensor signatures were monitored hatch-by-hatch in the form of spectral graph transform coefficients. These spectral graph coefficients are subsequently tracked on a Hotelling T2 statistical control chart. Instances of Type II statistical error, i.e., probability of failing to detect the onset of material cross-contamination, were verified against X-ray computed tomography (XCT) scans of the part to be within 5% in the case of aluminum contaminant particles. In contrast, traditional stochastic time series modeling approaches, e.g., ARMA, had corresponding Type II error exceeding 15%. Furthermore, the computation time for the spectral graph approach was found to be less than one millisecond, compared to nearly 100 ms for the traditional time series models tested.
    • Download: (7.457Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      In-Process Monitoring of Material Cross-Contamination Defects in Laser Powder Bed Fusion

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4252044
    Collections
    • Journal of Manufacturing Science and Engineering

    Show full item record

    contributor authorMontazeri, Mohammad
    contributor authorYavari, Reza
    contributor authorRao, Prahalada
    contributor authorBoulware, Paul
    date accessioned2019-02-28T11:02:40Z
    date available2019-02-28T11:02:40Z
    date copyright7/31/2018 12:00:00 AM
    date issued2018
    identifier issn1087-1357
    identifier othermanu_140_11_111001.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4252044
    description abstractThe goal of this work is to detect the onset of material cross-contamination in laser powder bed fusion (L-PBF) additive manufacturing (AM) process using data from in situ sensors. Material cross-contamination refers to trace foreign materials that may be introduced in the powder feedstock used in the process due to reasons such as poor cleaning of the machine after previous builds or inadequate quality control during production and storage of the powder. Material cross-contamination may lead to deleterious changes in the microstructure of the AM part and consequently affect its functional properties. Accordingly, the objective of this work is to develop and apply a spectral graph theoretic approach to detect the occurrence of material cross-contamination in real-time as the part is being built using in-process sensors. The central hypothesis is that transforming the process signals in the spectral graph domain leads to early and more accurate detection of material cross-contamination in L-PBF compared to the traditional delay-embedded Bon-Jenkins stochastic time series analysis techniques, such as autoregressive (AR) and autoregressive moving average (ARMA) modeling. To test this hypothesis, Inconel alloy 625 (UNS alloy 06625) test parts were made at Edison Welding Institute (EWI) on a custom-built L-PBF apparatus integrated with multiple sensors, including a silicon photodetector (with 300 nm to 1100 nm optical wavelength). During the process, two types of foreign contaminant materials, namely, tungsten and aluminum particulates, under varying degrees of severity were introduced. To detect cross-contamination in the part, the photodetector sensor signatures were monitored hatch-by-hatch in the form of spectral graph transform coefficients. These spectral graph coefficients are subsequently tracked on a Hotelling T2 statistical control chart. Instances of Type II statistical error, i.e., probability of failing to detect the onset of material cross-contamination, were verified against X-ray computed tomography (XCT) scans of the part to be within 5% in the case of aluminum contaminant particles. In contrast, traditional stochastic time series modeling approaches, e.g., ARMA, had corresponding Type II error exceeding 15%. Furthermore, the computation time for the spectral graph approach was found to be less than one millisecond, compared to nearly 100 ms for the traditional time series models tested.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleIn-Process Monitoring of Material Cross-Contamination Defects in Laser Powder Bed Fusion
    typeJournal Paper
    journal volume140
    journal issue11
    journal titleJournal of Manufacturing Science and Engineering
    identifier doi10.1115/1.4040543
    journal fristpage111001
    journal lastpage111001-19
    treeJournal of Manufacturing Science and Engineering:;2018:;volume( 140 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian