YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    An Experimental Study on Bipolar Tissue Hemostasis and Its Dynamic Impedance

    Source: Journal of Manufacturing Science and Engineering:;2018:;volume( 140 ):;issue: 006::page 61016
    Author:
    Li, Xiaoran
    ,
    Chen, Roland
    ,
    Li, Wei
    DOI: 10.1115/1.4039493
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Bipolar tissue hemostasis is a medical procedure where high frequency alternating current is applied to biological tissue for wound closing and blood vessel sealing through heating. The process is often performed with a set of laparoscopic forceps in a minimal invasive surgery to achieve less bleeding and shorter recovery time. However, problems such as tissue sticking, thermal damage, and seal failure often occur and need to be solved before the process can be reliably used in more surgical procedures. In this study, experiments were conducted to examine process parameters and the dynamic behavior of bipolar heating process through electrical impedance measurements. The effects of electrode compression level, heating power, and time are analyzed. Heating energy and bio-impedance are evaluated for quality prediction. Tissue sticking levels were correlated to the size of denatured tissue zone. It is found that tissue denaturation starts from the center of the heated region. Dynamic impedance reveals the stages of tissue hemostasis process. However, it is strongly affected by the compression level and heating power. Existing criteria for quality prediction and control using the heating energy and minimal impedance are not reliable. The size of denatured tissue zone can be predicted with the heating energy; however, the prediction is strongly dependent on the compression level. To avoid sticking, a low power and low compression level should be used for the same denatured tissue zone size.
    • Download: (6.133Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      An Experimental Study on Bipolar Tissue Hemostasis and Its Dynamic Impedance

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4252015
    Collections
    • Journal of Manufacturing Science and Engineering

    Show full item record

    contributor authorLi, Xiaoran
    contributor authorChen, Roland
    contributor authorLi, Wei
    date accessioned2019-02-28T11:02:31Z
    date available2019-02-28T11:02:31Z
    date copyright4/2/2018 12:00:00 AM
    date issued2018
    identifier issn1087-1357
    identifier othermanu_140_06_061016.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4252015
    description abstractBipolar tissue hemostasis is a medical procedure where high frequency alternating current is applied to biological tissue for wound closing and blood vessel sealing through heating. The process is often performed with a set of laparoscopic forceps in a minimal invasive surgery to achieve less bleeding and shorter recovery time. However, problems such as tissue sticking, thermal damage, and seal failure often occur and need to be solved before the process can be reliably used in more surgical procedures. In this study, experiments were conducted to examine process parameters and the dynamic behavior of bipolar heating process through electrical impedance measurements. The effects of electrode compression level, heating power, and time are analyzed. Heating energy and bio-impedance are evaluated for quality prediction. Tissue sticking levels were correlated to the size of denatured tissue zone. It is found that tissue denaturation starts from the center of the heated region. Dynamic impedance reveals the stages of tissue hemostasis process. However, it is strongly affected by the compression level and heating power. Existing criteria for quality prediction and control using the heating energy and minimal impedance are not reliable. The size of denatured tissue zone can be predicted with the heating energy; however, the prediction is strongly dependent on the compression level. To avoid sticking, a low power and low compression level should be used for the same denatured tissue zone size.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleAn Experimental Study on Bipolar Tissue Hemostasis and Its Dynamic Impedance
    typeJournal Paper
    journal volume140
    journal issue6
    journal titleJournal of Manufacturing Science and Engineering
    identifier doi10.1115/1.4039493
    journal fristpage61016
    journal lastpage061016-8
    treeJournal of Manufacturing Science and Engineering:;2018:;volume( 140 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian