YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    An Analytical Computation of Temperature Field Evolved in Directed Energy Deposition

    Source: Journal of Manufacturing Science and Engineering:;2018:;volume( 140 ):;issue: 010::page 101004
    Author:
    Li, Jianyi
    ,
    Wang, Qian
    ,
    (Pan) Michaleris, Panagiotis
    DOI: 10.1115/1.4040621
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This paper presents an analytical computation of temperature field evolved in a directed energy deposition process, using single-bead walls as illustrating examples. Essentially, the temperature field evolution during the deposition of a wall is computed by super-position of the temperature field generated by the laser source depositing the current bead and that induced from each of the past beads (layers). First, the transient solution to a point heat source in a semi-infinite body is applied to describe each individual temperature field. Then, to better describe temperature contribution from a past bead, a pair of virtual heat sources with positive and negative powers is assigned for each past bead to compute the temperature field under cooling. In addition, mirrored heat sources through a reflexion technique are introduced to define adiabatic boundaries of the part and to account for substrate thickness. In the end, three depositions of Ti-6AL-4V walls with different geometries and interlayer dwell times on an Optomec® laser engineering net shaping (LENS) system are used to validate the proposed analytical computation, where predicted temperatures at several locations of the substrate show reasonable agreement with the in situ temperature measurements with prediction error rate ranging from 12% to 27%. Furthermore, temperature distributions predicted by the proposed model are compared to finite element simulations. The proposed analytical computation for temperature field could be potentially used in model-based feedback control for thermal history in the deposition, which could affect microstructure evolution and other properties of the final part.
    • Download: (5.368Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      An Analytical Computation of Temperature Field Evolved in Directed Energy Deposition

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4252013
    Collections
    • Journal of Manufacturing Science and Engineering

    Show full item record

    contributor authorLi, Jianyi
    contributor authorWang, Qian
    contributor author(Pan) Michaleris, Panagiotis
    date accessioned2019-02-28T11:02:31Z
    date available2019-02-28T11:02:31Z
    date copyright7/9/2018 12:00:00 AM
    date issued2018
    identifier issn1087-1357
    identifier othermanu_140_10_101004.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4252013
    description abstractThis paper presents an analytical computation of temperature field evolved in a directed energy deposition process, using single-bead walls as illustrating examples. Essentially, the temperature field evolution during the deposition of a wall is computed by super-position of the temperature field generated by the laser source depositing the current bead and that induced from each of the past beads (layers). First, the transient solution to a point heat source in a semi-infinite body is applied to describe each individual temperature field. Then, to better describe temperature contribution from a past bead, a pair of virtual heat sources with positive and negative powers is assigned for each past bead to compute the temperature field under cooling. In addition, mirrored heat sources through a reflexion technique are introduced to define adiabatic boundaries of the part and to account for substrate thickness. In the end, three depositions of Ti-6AL-4V walls with different geometries and interlayer dwell times on an Optomec® laser engineering net shaping (LENS) system are used to validate the proposed analytical computation, where predicted temperatures at several locations of the substrate show reasonable agreement with the in situ temperature measurements with prediction error rate ranging from 12% to 27%. Furthermore, temperature distributions predicted by the proposed model are compared to finite element simulations. The proposed analytical computation for temperature field could be potentially used in model-based feedback control for thermal history in the deposition, which could affect microstructure evolution and other properties of the final part.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleAn Analytical Computation of Temperature Field Evolved in Directed Energy Deposition
    typeJournal Paper
    journal volume140
    journal issue10
    journal titleJournal of Manufacturing Science and Engineering
    identifier doi10.1115/1.4040621
    journal fristpage101004
    journal lastpage101004-13
    treeJournal of Manufacturing Science and Engineering:;2018:;volume( 140 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian