YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Microstructural Characterization of Thermal Damage on Silicon Wafers Sliced Using Wire-Electrical Discharge Machining

    Source: Journal of Manufacturing Science and Engineering:;2018:;volume( 140 ):;issue: 009::page 91001
    Author:
    Joshi, Kamlesh
    ,
    Bhandarkar, Upendra
    ,
    Samajdar, Indradev
    ,
    Joshi, Suhas S.
    DOI: 10.1115/1.4039647
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Slicing of Si wafers through abrasive processes generates various surface defects on wafers such as cracks and surface contaminations. Also, the processes cause a significant material loss during slicing and subsequent polishing. Recently, efforts are being made to slice very thin wafers, and at the same time understand the thermal and microstructural damage caused due to sparking during wire-electrical discharge machining (wire-EDM). Wire-EDM has shown potential for slicing ultra-thin Si wafers of thickness < 200 μm. This work, therefore, presents an extensive experimental work on characterization of the thermal damage due to sparking during wire-EDM on ultra-thin wafers. The experiments were performed using Response surface methodology (RSM)-based central composite design (CCD). The damage was mainly characterized by scanning electron microscope (SEM), transmission electron microscopy (TEM), and Raman spectroscopy. The average thickness of thermal damage on the wafers was observed to be ∼16 μm. The damage was highly influenced by exposure time of wafer surface with EDM plasma spark. Also, with an increase in diameter of plasma spark, the surface roughness was found to increase. TEM micrographs have confirmed the formation of amorphous Si along with a region of fine grained Si entrapped inside the amorphous matrix. However, there were no signs of other defects like microcracks, twin boundaries, or fracture on the surfaces. Micro-Raman spectroscopy revealed that in order to slice a wafer with minimum residual stresses and very low presence of amorphous phases, it should be sliced at the lowest value of pulse on-time and at the highest value of open voltage (OV).
    • Download: (7.789Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Microstructural Characterization of Thermal Damage on Silicon Wafers Sliced Using Wire-Electrical Discharge Machining

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4251990
    Collections
    • Journal of Manufacturing Science and Engineering

    Show full item record

    contributor authorJoshi, Kamlesh
    contributor authorBhandarkar, Upendra
    contributor authorSamajdar, Indradev
    contributor authorJoshi, Suhas S.
    date accessioned2019-02-28T11:02:22Z
    date available2019-02-28T11:02:22Z
    date copyright6/4/2018 12:00:00 AM
    date issued2018
    identifier issn1087-1357
    identifier othermanu_140_09_091001.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4251990
    description abstractSlicing of Si wafers through abrasive processes generates various surface defects on wafers such as cracks and surface contaminations. Also, the processes cause a significant material loss during slicing and subsequent polishing. Recently, efforts are being made to slice very thin wafers, and at the same time understand the thermal and microstructural damage caused due to sparking during wire-electrical discharge machining (wire-EDM). Wire-EDM has shown potential for slicing ultra-thin Si wafers of thickness < 200 μm. This work, therefore, presents an extensive experimental work on characterization of the thermal damage due to sparking during wire-EDM on ultra-thin wafers. The experiments were performed using Response surface methodology (RSM)-based central composite design (CCD). The damage was mainly characterized by scanning electron microscope (SEM), transmission electron microscopy (TEM), and Raman spectroscopy. The average thickness of thermal damage on the wafers was observed to be ∼16 μm. The damage was highly influenced by exposure time of wafer surface with EDM plasma spark. Also, with an increase in diameter of plasma spark, the surface roughness was found to increase. TEM micrographs have confirmed the formation of amorphous Si along with a region of fine grained Si entrapped inside the amorphous matrix. However, there were no signs of other defects like microcracks, twin boundaries, or fracture on the surfaces. Micro-Raman spectroscopy revealed that in order to slice a wafer with minimum residual stresses and very low presence of amorphous phases, it should be sliced at the lowest value of pulse on-time and at the highest value of open voltage (OV).
    publisherThe American Society of Mechanical Engineers (ASME)
    titleMicrostructural Characterization of Thermal Damage on Silicon Wafers Sliced Using Wire-Electrical Discharge Machining
    typeJournal Paper
    journal volume140
    journal issue9
    journal titleJournal of Manufacturing Science and Engineering
    identifier doi10.1115/1.4039647
    journal fristpage91001
    journal lastpage091001-14
    treeJournal of Manufacturing Science and Engineering:;2018:;volume( 140 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian