YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Methodology for Quantifying Cell Density and Distribution in Multidimensional Bioprinted Gelatin–Alginate Constructs

    Source: Journal of Manufacturing Science and Engineering:;2018:;volume( 140 ):;issue: 005::page 51014
    Author:
    Ding, Houzhu
    ,
    Tourlomousis, Filippos
    ,
    Chang, Robert C.
    DOI: 10.1115/1.4037572
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Bioprinted tissue constructs can be produced by microextrusion-based materials processing or coprinting of cells and hydrogel materials. In this paper, a gelatin–alginate hydrogel material formulation is implemented as the bio-ink toward a three-dimensional (3D) cell-laden tissue construct. However, of fundamental importance during the printing process is the interplay between the various parameters that yield the final cell distribution and cell density at different dimensional scales. To investigate these effects, this study advances a multidimensional analytical framework to determine both the spatial variations and temporal evolution of cell distribution and cell density within a bioprinted cell-laden construct. In the one-dimensional (1D) analysis, the cell distribution and single printed fiber shape in the circular cross-sectional view are observed to be dependent on the process temperature and material concentration parameters, along with the initial bio-ink cell densities. This is illustrated by reliable fabrication verified by image line profile analyses of structural fiber prints. Round fiber prints with width 809.5 ± 52.3 μm maintain dispersive cells with a degree of dispersion (Dd) at 96.8 ± 6.27% that can be achieved at high relative material viscosities under low temperature conditions (21 °C) or high material concentrations (10% w/v gelatin). On the other hand, flat fiber prints with width 1102.2 ± 63.66 μm coalesce cells toward the fiber midline with Dd = 76.3 ± 4.58% that can be fabricated at low relative material viscosities under high temperature (24 °C) or low material concentrations (7.5% w/v gelatin). A gradual decrement of Dd (from 80.34% to 52.05%) is observed to be a function of increased initial bio-ink cell densities (1.15 × 106–16.0 × 106 cells/ml). In the two-dimensional (2D) analysis, a printed grid structure yields differential cell distribution, whereby differences in localized cell densities are observed between the strut and cross regions within the printed structure. At low relative viscosities, cells aggregate at the cross regions where two overlapping filaments fuse together, yielding a cell density ratio of 2.06 ± 0.44 between the cross region and the strut region. However, at high relative viscosities, the cell density ratio decreases to 0.96 ± 0.03. In the 3D analysis, the cell density attributed to the different layers is studied as a function of printing time elapsed from the initial bio-ink formulation. Due to identifiable cell sedimentation, the dynamics of cell distribution within the original bio-ink cartridge or material reservoir yield initial quantitative increases in the cell density for the first several printed layers, followed by quantitative decreases in the subsequent printed layers. Finally, during incubation, the evolution of cell density and the emergence of material degradation effects are studied in a time course study. Variable initial cell densities (0.6 × 106 cells/mL, 1.0 × 106 cells/mL, and acellular control group) printed and cross-linked into cell-laden constructs for a 48 h time course study exhibit a time-dependent increase in cell density owing to proliferation within the constructs that are presumed to affect the rate of bio-ink material degradation.
    • Download: (4.75Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Methodology for Quantifying Cell Density and Distribution in Multidimensional Bioprinted Gelatin–Alginate Constructs

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4251944
    Collections
    • Journal of Manufacturing Science and Engineering

    Show full item record

    contributor authorDing, Houzhu
    contributor authorTourlomousis, Filippos
    contributor authorChang, Robert C.
    date accessioned2019-02-28T11:02:06Z
    date available2019-02-28T11:02:06Z
    date copyright3/7/2018 12:00:00 AM
    date issued2018
    identifier issn1087-1357
    identifier othermanu_140_05_051014.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4251944
    description abstractBioprinted tissue constructs can be produced by microextrusion-based materials processing or coprinting of cells and hydrogel materials. In this paper, a gelatin–alginate hydrogel material formulation is implemented as the bio-ink toward a three-dimensional (3D) cell-laden tissue construct. However, of fundamental importance during the printing process is the interplay between the various parameters that yield the final cell distribution and cell density at different dimensional scales. To investigate these effects, this study advances a multidimensional analytical framework to determine both the spatial variations and temporal evolution of cell distribution and cell density within a bioprinted cell-laden construct. In the one-dimensional (1D) analysis, the cell distribution and single printed fiber shape in the circular cross-sectional view are observed to be dependent on the process temperature and material concentration parameters, along with the initial bio-ink cell densities. This is illustrated by reliable fabrication verified by image line profile analyses of structural fiber prints. Round fiber prints with width 809.5 ± 52.3 μm maintain dispersive cells with a degree of dispersion (Dd) at 96.8 ± 6.27% that can be achieved at high relative material viscosities under low temperature conditions (21 °C) or high material concentrations (10% w/v gelatin). On the other hand, flat fiber prints with width 1102.2 ± 63.66 μm coalesce cells toward the fiber midline with Dd = 76.3 ± 4.58% that can be fabricated at low relative material viscosities under high temperature (24 °C) or low material concentrations (7.5% w/v gelatin). A gradual decrement of Dd (from 80.34% to 52.05%) is observed to be a function of increased initial bio-ink cell densities (1.15 × 106–16.0 × 106 cells/ml). In the two-dimensional (2D) analysis, a printed grid structure yields differential cell distribution, whereby differences in localized cell densities are observed between the strut and cross regions within the printed structure. At low relative viscosities, cells aggregate at the cross regions where two overlapping filaments fuse together, yielding a cell density ratio of 2.06 ± 0.44 between the cross region and the strut region. However, at high relative viscosities, the cell density ratio decreases to 0.96 ± 0.03. In the 3D analysis, the cell density attributed to the different layers is studied as a function of printing time elapsed from the initial bio-ink formulation. Due to identifiable cell sedimentation, the dynamics of cell distribution within the original bio-ink cartridge or material reservoir yield initial quantitative increases in the cell density for the first several printed layers, followed by quantitative decreases in the subsequent printed layers. Finally, during incubation, the evolution of cell density and the emergence of material degradation effects are studied in a time course study. Variable initial cell densities (0.6 × 106 cells/mL, 1.0 × 106 cells/mL, and acellular control group) printed and cross-linked into cell-laden constructs for a 48 h time course study exhibit a time-dependent increase in cell density owing to proliferation within the constructs that are presumed to affect the rate of bio-ink material degradation.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleA Methodology for Quantifying Cell Density and Distribution in Multidimensional Bioprinted Gelatin–Alginate Constructs
    typeJournal Paper
    journal volume140
    journal issue5
    journal titleJournal of Manufacturing Science and Engineering
    identifier doi10.1115/1.4037572
    journal fristpage51014
    journal lastpage051014-10
    treeJournal of Manufacturing Science and Engineering:;2018:;volume( 140 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian