YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Estimating Two Heat-Conduction Parameters From Two Complementary Transient Experiments

    Source: Journal of Heat Transfer:;2018:;volume( 140 ):;issue: 007::page 71301
    Author:
    McMasters, Robert L.
    ,
    de Monte, Filippo
    ,
    Beck, James V.
    DOI: 10.1115/1.4038855
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: A desirable feature of any parameter estimation method is to obtain as much information as possible with one experiment. However, achieving multiple objectives with one experiment is often not possible. In the field of thermal parameter estimation, a determination of thermal conductivity, volumetric heat capacity, heat addition rate, surface emissivity, and convection coefficient may be desired from a set of temperature measurements in an experiment where a radiant heat source is used. It would not be possible to determine all of these parameters from such an experiment; more information would be needed. The work presented in the present research shows how thermal parameters can be determined from temperature measurements using complementary experiments where the same material is tested more than once using a different geometry or heating configuration in each experiment. The method of ordinary least squares is used in order to fit a mathematical model to a temperature history in each case. Several examples are provided using one-dimensional conduction experiments, with some having a planar geometry and some having a cylindrical geometry. The parameters of interest in these examples are thermal conductivity and volumetric heat capacity. Sometimes, both of these parameters cannot be determined simultaneously from one experiment but utilizing two complementary experiments may allow each of the parameters to be determined. An examination of confidence regions is an important topic in parameter estimation and this aspect of the procedure is addressed in the present work. A method is presented as part of the current research by which confidence regions can be found for results from a single analysis of multiple experiments.
    • Download: (470.3Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Estimating Two Heat-Conduction Parameters From Two Complementary Transient Experiments

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4251800
    Collections
    • Journal of Heat Transfer

    Show full item record

    contributor authorMcMasters, Robert L.
    contributor authorde Monte, Filippo
    contributor authorBeck, James V.
    date accessioned2019-02-28T11:01:16Z
    date available2019-02-28T11:01:16Z
    date copyright3/30/2018 12:00:00 AM
    date issued2018
    identifier issn0022-1481
    identifier otherht_140_07_071301.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4251800
    description abstractA desirable feature of any parameter estimation method is to obtain as much information as possible with one experiment. However, achieving multiple objectives with one experiment is often not possible. In the field of thermal parameter estimation, a determination of thermal conductivity, volumetric heat capacity, heat addition rate, surface emissivity, and convection coefficient may be desired from a set of temperature measurements in an experiment where a radiant heat source is used. It would not be possible to determine all of these parameters from such an experiment; more information would be needed. The work presented in the present research shows how thermal parameters can be determined from temperature measurements using complementary experiments where the same material is tested more than once using a different geometry or heating configuration in each experiment. The method of ordinary least squares is used in order to fit a mathematical model to a temperature history in each case. Several examples are provided using one-dimensional conduction experiments, with some having a planar geometry and some having a cylindrical geometry. The parameters of interest in these examples are thermal conductivity and volumetric heat capacity. Sometimes, both of these parameters cannot be determined simultaneously from one experiment but utilizing two complementary experiments may allow each of the parameters to be determined. An examination of confidence regions is an important topic in parameter estimation and this aspect of the procedure is addressed in the present work. A method is presented as part of the current research by which confidence regions can be found for results from a single analysis of multiple experiments.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleEstimating Two Heat-Conduction Parameters From Two Complementary Transient Experiments
    typeJournal Paper
    journal volume140
    journal issue7
    journal titleJournal of Heat Transfer
    identifier doi10.1115/1.4038855
    journal fristpage71301
    journal lastpage071301-8
    treeJournal of Heat Transfer:;2018:;volume( 140 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian