YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Numerical Study and Optimization of Corrugation Height and Angle of Attack of Vortex Generator in the Wavy Fin-and-Tube Heat Exchanger

    Source: Journal of Heat Transfer:;2018:;volume( 140 ):;issue: 011::page 111801
    Author:
    Li, Wei
    ,
    Khan, Tariq Amin
    ,
    Tang, Weiyu
    ,
    Minkowycz, W. J.
    DOI: 10.1115/1.4040609
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Wavy fins have been considered as an alternative of the straight fins in compact heat exchangers (CHEs) for better heat transfer performance, which can be augmented by considering vortex generators (VGs). This work is related to numerical investigation and optimization of corrugation height of fin and angle of attack of delta winglet type VGs in a wavy fin-and-tube heat exchanger. For this purpose, three-dimensional (3D) Reynolds-averaged Navier-Stokes analysis and a multi-objective genetic algorithm (MOGA) with surrogate modeling are performed. Numerical simulation is carried out to study the effect of delta winglets with varying the corrugation height of wavy fin in three rows of tubes with staggered tube arrangements. The corrugation height (H) and angle of attack (α) vary from 0.3 mm to 1.8 mm and 15 deg to 75 deg, respectively. Results are illustrated by investigating the flow structures and temperature contours. Results show that increasing the corrugation height of wavy fin and angle of attack of delta winglets enhances the heat transfer performance of heat exchanger while friction factor is also increased. Employing delta winglets has augmented the thermal performance for all corrugation heights and superior effect is observed at a higher corrugation. To achieve a maximum heat transfer enhancement and a minimum pressure drop, the optimal values of these parameters (H and α) are calculated using the Pareto optimal strategy. For this purpose, computational fluid dynamics (CFD) data, a surrogate model (neural network), and a multi-objective GA are combined. Results show that optimal orientation of delta winglets with respect to corrugation height can improve both the thermal and hydraulic performance of the heat exchanger.
    • Download: (2.150Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Numerical Study and Optimization of Corrugation Height and Angle of Attack of Vortex Generator in the Wavy Fin-and-Tube Heat Exchanger

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4251775
    Collections
    • Journal of Heat Transfer

    Show full item record

    contributor authorLi, Wei
    contributor authorKhan, Tariq Amin
    contributor authorTang, Weiyu
    contributor authorMinkowycz, W. J.
    date accessioned2019-02-28T11:01:07Z
    date available2019-02-28T11:01:07Z
    date copyright7/23/2018 12:00:00 AM
    date issued2018
    identifier issn0022-1481
    identifier otherht_140_11_111801.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4251775
    description abstractWavy fins have been considered as an alternative of the straight fins in compact heat exchangers (CHEs) for better heat transfer performance, which can be augmented by considering vortex generators (VGs). This work is related to numerical investigation and optimization of corrugation height of fin and angle of attack of delta winglet type VGs in a wavy fin-and-tube heat exchanger. For this purpose, three-dimensional (3D) Reynolds-averaged Navier-Stokes analysis and a multi-objective genetic algorithm (MOGA) with surrogate modeling are performed. Numerical simulation is carried out to study the effect of delta winglets with varying the corrugation height of wavy fin in three rows of tubes with staggered tube arrangements. The corrugation height (H) and angle of attack (α) vary from 0.3 mm to 1.8 mm and 15 deg to 75 deg, respectively. Results are illustrated by investigating the flow structures and temperature contours. Results show that increasing the corrugation height of wavy fin and angle of attack of delta winglets enhances the heat transfer performance of heat exchanger while friction factor is also increased. Employing delta winglets has augmented the thermal performance for all corrugation heights and superior effect is observed at a higher corrugation. To achieve a maximum heat transfer enhancement and a minimum pressure drop, the optimal values of these parameters (H and α) are calculated using the Pareto optimal strategy. For this purpose, computational fluid dynamics (CFD) data, a surrogate model (neural network), and a multi-objective GA are combined. Results show that optimal orientation of delta winglets with respect to corrugation height can improve both the thermal and hydraulic performance of the heat exchanger.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleNumerical Study and Optimization of Corrugation Height and Angle of Attack of Vortex Generator in the Wavy Fin-and-Tube Heat Exchanger
    typeJournal Paper
    journal volume140
    journal issue11
    journal titleJournal of Heat Transfer
    identifier doi10.1115/1.4040609
    journal fristpage111801
    journal lastpage111801-11
    treeJournal of Heat Transfer:;2018:;volume( 140 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian