Investigation of Mixed Convection Heat Transfer Through Metal Foams Partially Filled in a Vertical Channel by Using Computational Fluid DynamicsSource: Journal of Heat Transfer:;2018:;volume( 140 ):;issue: 011::page 112501DOI: 10.1115/1.4040614Publisher: The American Society of Mechanical Engineers (ASME)
Abstract: Two-dimensional computational fluid dynamics simulations of mixed convection heat transfer through aluminum metal foams partially filled in a vertical channel are carried out numerically. The objective of the present study is to quantify the effect of metal foam thickness on the fluid flow characteristics and the thermal performance in a partially filled vertical channel with metal foams for a fluid velocity range of 0.05–3 m/s. The numerical computations are performed for metal foam filled with 40%, 70%, and 100% by volume in the vertical channel for four different pores per inch (PPIs) of 10, 20, 30, and 45 with porosity values varying from 0.90 to 0.95. To envisage the characteristics of fluid flow and heat transfer, two different models, namely, Darcy Extended Forchheirmer (DEF) and Local thermal non-equilibrium, have been incorporated for the metal foam region. The numerical results are compared with experimental and analytical results available in the literature for the purpose of validation. The results of the parametric studies on vertical channel show that the Nusselt number increases with the increase of partial filling of metal foams. The thermal performance of the metal foams is reported in terms of Colburn j and performance factors.
|
Collections
Show full item record
| contributor author | Kotresha, Banjara | |
| contributor author | Gnanasekaran, N | |
| date accessioned | 2019-02-28T11:01:02Z | |
| date available | 2019-02-28T11:01:02Z | |
| date copyright | 7/23/2018 12:00:00 AM | |
| date issued | 2018 | |
| identifier issn | 0022-1481 | |
| identifier other | ht_140_11_112501.pdf | |
| identifier uri | http://yetl.yabesh.ir/yetl1/handle/yetl/4251760 | |
| description abstract | Two-dimensional computational fluid dynamics simulations of mixed convection heat transfer through aluminum metal foams partially filled in a vertical channel are carried out numerically. The objective of the present study is to quantify the effect of metal foam thickness on the fluid flow characteristics and the thermal performance in a partially filled vertical channel with metal foams for a fluid velocity range of 0.05–3 m/s. The numerical computations are performed for metal foam filled with 40%, 70%, and 100% by volume in the vertical channel for four different pores per inch (PPIs) of 10, 20, 30, and 45 with porosity values varying from 0.90 to 0.95. To envisage the characteristics of fluid flow and heat transfer, two different models, namely, Darcy Extended Forchheirmer (DEF) and Local thermal non-equilibrium, have been incorporated for the metal foam region. The numerical results are compared with experimental and analytical results available in the literature for the purpose of validation. The results of the parametric studies on vertical channel show that the Nusselt number increases with the increase of partial filling of metal foams. The thermal performance of the metal foams is reported in terms of Colburn j and performance factors. | |
| publisher | The American Society of Mechanical Engineers (ASME) | |
| title | Investigation of Mixed Convection Heat Transfer Through Metal Foams Partially Filled in a Vertical Channel by Using Computational Fluid Dynamics | |
| type | Journal Paper | |
| journal volume | 140 | |
| journal issue | 11 | |
| journal title | Journal of Heat Transfer | |
| identifier doi | 10.1115/1.4040614 | |
| journal fristpage | 112501 | |
| journal lastpage | 112501-11 | |
| tree | Journal of Heat Transfer:;2018:;volume( 140 ):;issue: 011 | |
| contenttype | Fulltext |